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The UpScale Project 
 

UPSCALE is the first EU project with the specific goal of integrating Artificial Intelligence (AI) 
with traditional physics-based Computer Aided Engineering to reduce the development time and 
increase the performance of electric vehicles (EVs). 
Nowadays High-Performance Computing (HPC) and Computer Aided Engineering (CAE) play 
a decisive role in vehicle development processes, thus the two most HPC and CAE intensive 
parts of the development, which are vehicle aero-thermal and vehicle crash performance, have 
been chosen as use cases for the endeavour. 
Through the combined effort of universities, research laboratories, European automotive OEMs, 
software companies and an AI-SME specialized in Machine Learning (ML), the UPSCALE, 
project will provide a unique and effective environment to produce novel AI-based CAE-software 
solutions to improve the competitiveness of the automotive industry. 
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ABSTRACT 

The present deliverable describes the assessment of the researched and developed 
methodologies within the crash part of UPSCALE. The integration of the methods into a full 
vehicle crash simulation is described as well as a robustness analysis. Three methods are 
investigated. The first is the AI model for predicting the short circuit risk which was finally 
delivered from WP5.1. Second, the integration of load case parameters into a reduced order 
model was delivered in WP5.2. Third, the AI model predicting the stiffness of the battery cell 
jellyroll which was delivered in WP5.3. Finally, the future application fields of the methods are 
discussed. 
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Disclaimer  

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, 
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS 
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF 
ANY PROPOSAL, SPECIFICATION OR SAMPLE. Any liability, including liability for 
infringement of any proprietary rights, relating to use of information in this document is 
disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property 
rights are granted herein. The members of the project Upscale do not accept any liability for 
actions or omissions of Upscale members or third parties and disclaims any obligation to enforce 
the use of this document. This document is subject to change without notice. 
 

Abbreviations 
AI Artificial Intelligence 

CPU Central processing unit 

DoE Design of Experiment 

FEA Finite Element Analysis 

FEM Finite Element Method 

HPC High Performance Computing 
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RVE Representative Volume Elements 

SC Short Circuit 

sPGD Sparse Proper Generalized Decomposition 

VPS Virtual Performance Solution 
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1 Executive Summary 
 
The present deliverable describes the assessment of the researched and developed 
methodologies within the crash part of the UPSCALE project. The methodology and the resulting 
models have been set up during the project period within the work packages 1, 3 and 5. The 
integration of the methods into a full vehicle crash simulation is described here. The main focus 
lies on the assessment of the AI based model for predicting the internal risk of short circuit within 
a battery cell during a full vehicle crash scenario. But also the integration of load case 
parameters in a reduced order model using the sPGD method and the prediction of the stiffness 
of the battery cellsô jellyroll by an AI based model integrated to full vehicle crash simulations are 
discussed. For each of the three models/methods the integration into the full vehicle model is 
explained in detail.  
 
In chapter 2 a small introduction is presented to get a better understanding of the subsequent 
chapters. In chapter 3 the integration of the AI based model for predicting the short circuit risk 
into the vehicle simulation model is explained. The model was finally delivered in WP5.1 by 
Ensam and ESI. The prediction of the model is discussed. A robustness study is presented. 
Finally, improvements for future work are recommended. In chapter 4, the integration of load 
case parameters into a reduced order model using the sPGD method is assessed. The method 
was delivered in WP5.2 by ESI. It is applied to some side pole crash scenarios with four changing 
parameters. The interpolation result file allows the user to investigate intermediate solutions by 
interpolation within one file. The interpolation of the risk of short circuit is discussed as well as 
further possible application areas. Chapter 5 is dedicated to the AI model predicting the stiffness 
of the battery cell jellyroll which was delivered in WP5.3 by ESI. The integration to the full vehicle 
model is explained. The assessment of the method is presented and recommendations for 
improvements and further usage are given. Finally, chapter 6 deals with the conclusion and a 
discussion on deviations in time and content. 
 
At this point the authors want to emphasize, that the results of the full vehicle simulations may 
not be used in order to assess the safety or performance of the present vehicle or even a real 
vehicle which may look similar. First of all, the load cases are adjusted in such a way, that no 
legal or consumer test may be valid anymore. Second, the vehicles themselves are not based 
on real vehicles as they only exist as FE models for research reasons. Furthermore, a 
comparison with existing vehicles, whether they are now available or in the future, is strictly 
prohibited. 
 
The vehicle model has been derived from a battery electric vehicle model that was used in the 
national project SMILE (SysteM-Integrated multi-material Lightweight concept for E-mobility) 
funded by the German Federal Ministry of Education and Research from 2014 to 2017. The 
battery concept and parts of the battery models are used from the project ALIVE (Advanced high 
volume affordable LIghtweighting for future electric VEhicles) which was co-funded by the 
European Communityôs 7th Framework Programme from 2012 to 2016. The vehicle type is 
comparable to an e-Golf type. 
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2 Introduction 
 
The AI and ROM models developed within the crash part of the UPSCALE project have been 
implemented into the Volkswagen battery electric vehicle model, see Figure 1. The model has 
been already described in deliverable D5.2 in detail. Here, the authors just want to repeat the 
relevant parts, i.e. the battery assembly, in order to ensure a better understanding of the 
implementation process. The FE model consist of 5 million shell elements (2D) and 2.5 million 
solid elements (3D), where the majority of solid elements is located in the battery cellsô jellyroll. 
For all simulations 40 contour plots (element variables) and 1000 time history plots (e.g. 
measured forces) were stored in the result file, leading to an average non-compressed main 
output file size of around 9.1GB. This file size is usually much smaller, as the amount of output 
variables is reduced and the files are compressed but in this research project the authors 
decided to have more output in order to improve the assessment of the model and the methods 
and to locate possible issues which occurred during the implementation. 
 

 
Figure 1: Body-in-white of the vehicle model, battery packages are highlighted in red 

 
 
The battery modules and the battery cells are assembled by using the VPS modular input, see 
[1]. This allows the reuse of an FE model without causing issues with the node or element 
numbering. Figure 2 shows an overview of the front and rear battery package and the battery 
modules and battery cells incorporated. Only one FE model for the battery modules and one for 
the battery cells is used leading finally to 14 battery modules and 210 battery cells in the vehicle 
model.  
 
The post-processing is not affected by the modular input, as the unique numbering of each 
battery module or cell allows a convenient location within a post-processor. Figure 3 shows the 
deformation field of the battery packages after a severe side pole impact and the location of a 
battery cell within ESI post-processor Visual Viewer. 
 
Finally, Figure 3 (b) also shows the jellyroll of the battery cell. This is the main focus of the 
assessment of the methods, described in the subsequent chapters. The jellyroll consists of 6600 
solid elements leading to a total of around 1.4 million solid elements for all jellyrolls in the FE 
model. 
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(a) Front battery package  

 
 

 
 
 

(b) Rear battery package 

 
(c) Battery cells of module 101 

 

 
(d) Battery cells of module 201 

Figure 2: Overview of the battery packages, modules and cells and its numbering using VPS modular input  

 
 

 

(a) Deformation field of the battery packages  

 

 
 

(b) Post-processing within ESIs Visual Viewer 

Figure 3: Post-processing of the battery packages undergoing a severe side pole impact 
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3 Assessment of the AI based model predicting the risk of short 
circuit in a full vehicle crash load case 

 
Within the UPSCALE project two AI based models for predicting the internal risk of short circuit 
in a battery cell FE model have been set up. The first one is using the basic full vehicle simulation 
result exhibiting the battery cellsô jellyroll which is modelled with a homogenized Honeycomb 
material, i.e. MAT42 in VPS. After the simulation is finished a python based post-processing tool 
which has the AI based model implemented is applied to the output file and creates a new output 
file containing a new element variable for the jellyroll solid elements being the risk of short circuit. 
The training of the AI model has been described in deliverable D3.2.  
 
At Volkswagen the implementation of the post-processing tool has met some issues, as the 
utilized versions of the python tool and the python libraries included were different to the versions 
of the Volkswagen environment. To circumvent this issue ESI has prepared a compiled version 
of the post-processing tool, including all necessary libraries. This allows the usage of the first 
method on a windows operating system. As the post-processing of a vehicle model is performed 
on Linux operating systems at Volkswagen the python tool cannot be added to this procedure, 
the crash engineer would need to perform an additional post-processing step for each 
simulation. Due to this reason, the first approach was not assessed by Volkswagen. 
 
However, the second AI based method is circumventing this additional post-processing step, as 
the AI based risk is directly implemented to the material model of the jellyroll. This is realized 
within the VPS plugin user material framework with MAT85. User libraries usually define a 
mechanical material law based on the FE integration points of the solid elements, with access 
to element internal variables. The selected AI based internal short circuit risk uses elements 
strain state and so can be added in VPS user material framework, as shown by Greve et al [2]. 
 
ESI has implemented the Honeycomb material together with the evaluation procedure of the AI 
model, which is simple linear algebra plus the application of analytic functions. For the short 
circuit AI model, the Support Vector Machine (SVM) classifier and regression parameters have 
been added to the material model via lookup tables. In this way, the AI model parameters can 
be changed by the user. As the training of the AI model is still possible with the above described 
windows version, the user is able to exchange the AI model coefficients by his own needs. This 
fact is a big advantage, as the material is not a typical black box material which can be changed 
by ESI only. 
 
The plugin material is implemented in a special user library, which can be compiled 
independently of the main VPS code. This allows the usage of stable versions of the VPS main 
code, in this case VPS version 2020.52. The additional user library is integrated using the 
environment variable PAMSHARE which is set to the folder, where the user library is located. 
The main code is checking the folder for present user libraries and thus the MAT85 material 
cards used within the FE model can be read correctly by the main code. 
 
On average the simulation with the AI based short circuit risk model took 6.5 hours on the cluster 
using 64 CPUs. This time includes already the time for file upload and download. Compared to 
the times using the homogenized Honeycomb material, which was 5.9 hours on average, the 
time increase is acceptable. Without dummies and airbags, which was the case in the 
investigation phase, the simulation times could be reduced to 4.3 hours on average. The time 
step stayed stable at 0.5 ɛs. The simulation times show, that the first objective of the project is 
already met, namely the possibility to assess the risk of short circuit at reasonable cost. Dealing 
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with simulations of around 6.5 hours, the crash engineer has the possibility to assess two 
variants of the vehicle model per working day. Please note, this is the case for side crash. Other 
crash scenarios will have its own typical computation times. But the fact, that the simulation 
times using the AI model are similar than with the initial model using a homogenized Honeycomb 
material for predicting the stiffness of the jellyroll only, indicates that the times for front or rear 
crash will be similar as well. The authors want to emphasize, that the usage of a user material 
library comes along with a larger computation time, as the VPS main code needs to interact with 
the additional user library. Simple tensile tests, using only one material law, have shown, that 
the overhead by using user material libraries in VPS compared to an equivalent material from 
the main code can be up to 30%. Here, the implementation of the MAT85 to the main code of 
VPS by ESI will lead to a decrease of simulation time in future releases. 
 

 
Figure 4: Visualization of the methodology for creating the AI based model predicting the risk of an internal short circuit in a 
battery cell 

 
The proof of concept for the developed methodology, see Figure 4, is depicted in Figure 5. This 
is one of the first simulations, which terminated without an error. Please note again, the 
deformation of the vehiclesô body-in-white must not be compared to some real vehicles or real 
legal or consumer tests. The risk of short circuit is computed correctly and may be visualized in 
typical post-processors, in this case animator4 by GNS. 
The first DoEs have shown a high number of instabilities leading to early error terminations of 
the simulations of up to 50% of the runs. For this reason, the model was investigated in more 
detail. The instability problems occurred mostly in some of the jellyrolls during the simulations. 
Comparing the deformation of the jellyroll solids and the hourglass energy within each jellyroll, 
the hourglass energy has been identified as the main reason for the instabilities. This was proven 
by a simulation with selective reduced integration (SRI) scheme, showing no hourglass effects 
at all. As the SRI scheme is much more time consuming, it is only used for debugging in full 
vehicle models. As the material law has changed from MAT42 to MAT85, the hourglass 
prevention mode has been changed from the viscous method using hourglass base vectors 
(ISHG=0) to the stiffness method using hourglass shape vectors (ISHG=2). Figure 6 shows the 
comparison of the hourglass energy in the jellyrolls using the three different integration schemes 
and hourglass prevention modes. This change has solved the instability problems. In a further 
DoE only one out of forty simulations has terminated with an error but not originated from the 
jellyroll.  
 
 



D5.9 Final report containing proposal for further use of the 
new methods 

 

 11 
INTERNAL 

 

(a) Deformation field of the body-in-white   

(b) Risk of short circuit 

Figure 5: Visualization of the risk of short circuit within the jellyrolls of the battery cells (b) after loaded by a severe side pole 
crash load (a) 

 

 
Figure 6: Comparison of the hourglass energy in the jellyroll using different integration schemes and hourglass prevention modes  

 
Concerning the assessment of the AI based model the risk shown in Figure 5 (b) is not plausible, 
as the risk is reaching high values in the rear battery pack, although the pole is indenting near 
the front battery pack. The risk is starting already at some positive values of around 0.1, which 
is caused by the AI model. After some time steps, the risk is then increasing to values up to 
0.95, which is already critical. This increase in the early phase of the simulation is not physical, 
as the battery cells are not yet deformed. To identify the reason for this unphysical behavior the 
model has been investigated further. As the battery cell is under pressure, the first idea was, 
that the pressure is causing the high increase of the risk. But a simulation without the pressure 
in the battery cells did not solved the issue. A second approach was to reduce the contact among 
the cells. This was realized by decreasing the number of battery cells within the module in the 
sense that every second cell was excluded from the FE model. But this also did not solved the 
issue.  
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Figure 7: Risk of short circuit in the battery cells for a simulation with 50km/h initial velocity 

 
 

 
Figure 8: Risk of short circuit in the battery cells for a simulation with 5km/h initial velocity 

 
Finally, the dynamics of the load case were expected to cause the high increase of the risk of 
short circuit variable in the early phase of the simulation. For this reason a simulation of the side 
pole crash was performed at a velocity of 5km/h. A comparison of the risk of short circuit 
variables for the slow side pole crash with a simulation with 50km/h initial velocity shows, that 
the dynamics play a significant role. Figure 7 shows the risk of short circuit at an early stage for 
the simulation with 50km/h whereas Figure 8 show the variable for the simulation with 5km/h 
initial velocity. Here, the effect of the dynamics can be seen quite clear, as the risk of short circuit 
is way more severe in the fast simulation than in the slow one, although the indentation of the 
pole is almost the same for both simulation, i.e. the fast simulation was evaluated at 1.45ms and 
the 10 times slower simulation was evaluated at 15ms. As shown in Figure 9, the deformation 
of the battery at this early stage has not yet started. The whole body-in-with structure is still 
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undeformed. The only influence on the battery cells comes from the pulse caused by the first 
contact of the car with the pole due to the initial velocity. Of course, the risk of short circuit is still 
reaching non-physical values at the early stage, but compared to a quasi-static case, the slow 
simulation with initial velocity of 5km/h is still 1000 times faster, as the simulations for the unit-
cell test, i.e. the three-point-bending test, the cylindrical and spherical indentation and the folding 
test are in the range of some few millimeters per second. As the time for investigating the 
methods in a stable environment and with robust versions was very short, further improvements 
in the training and/or structure of the AI model were not possible. This comes from the fact, that 
the whole methodology has been built up from scratch during the project. The battery models 
had to be developed as well as the vehicle models, that needed an adjustment to the new battery 
geometry. The whole subsequent procedure of training data generation from the full vehicle 
DoEs with homogenized macro scale battery cells, via the meso-scale cell simulations to the 
creation of the AI based models has been performed. The integration of the AI based models to 
the full vehicle simulations finally took more iterations than expected, such that the investigation 
on the AI models itself was limited. Nevertheless the proof of concept is shown in this chapter. 
 

 
Figure 9: Top view of the slow simulation (5km/h) including the pole, side rocker and b-pillar  

 
Knowing the fact, that the risk of short circuit is increasing non-physically in the beginning of the 
simulation, this initial error can be dismissed. This strategy was applied to two load cases, a 
severe side pole crash scenario with 55km/h initial velocity and a moderate side pole crash 
scenario with 36km/h initial velocity. Please note, that the two simulations have not been used 
to train the AI based model for predicting the risk of short circuit. The pole is positioned such 
that it indents the vehicle more or less at the same point as for the slow side crash in Figure 9. 
 
For the severe crash scenario Figure 10 shows the risk of short circuit in the front battery cells 
viewed from the crash side. After the risk is increasing due to the dynamics in the early stage of 
the simulation up to 3ms, see Figure 10 (a), the risk stays almost unchanged for the next 20ms, 
see Figure 10 (b). At 24ms, Figure 10 (c), suddenly the risk is increasing at the top of the battery 






















