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1 Executive Summary 
 
The present deliverable analyzes the computing efficiency for the various methodologies of 
reduced order models (ROM), which deployment was described in D3.3. This entails 
optimization of computing efficiency, time step, mesh gauges and scalability in DMP on full 
vehicle models. 
 
The short circuit ROM was evaluated as an embedded user material at a macro scale with an 
embedded short circuit criterion on a full vehicle pole impact simulation. Various subcycling 
parameters between the ROM and FEA solver were investigated with an optimum found to 
produce similar computing costs as the standard honeycomb material. Coarser mesh gauges 
were tested to evaluate if the computation could be further sped up. Last, scaling up to 144 
processors was confirmed.   
 
The cell stiffness ROM integration in a crash simulation required the development of a new user 
generalized element API in VPS to enable the hybrid computation of reduced order model and 
finite element solver. First, the generic API calls within the general FEA code is detailed. Then, 
the deployment of the Incremental Dynamic Mode Decomposition (IDMD) ROM in the generic 
user element is presented. Last, the challenges and improvements to the coupling are 
mentioned. 
 
An alternative method for the cell stiffness ROM is presented by leveraging ESI neural network 
material model as used for honeycomb or composite structures. The method is evaluated at cell 
and vehicle level in terms of computing efficiency and mesh gauge dependency. The TANN 
approach can be combined easily with the short circuit ROM as they are both based on strain 
tensor inputs. 
 
The deliverable objectives according to the proposal could be fulfilled. The time amendment 
enabled design iterations on a coming general API in ESI VPS which enables coupling of the 
cell stiffness ROM with FEA. To limit time deviation on the final deliverables, a neural network-
based approach was developed and evaluated in terms of computing efficiency at the vehicle 
level. Additionally, this will allow evaluation with both cell stiffness and internal short circuit 
ROMs. 
 
This deliverable is uploaded with 3 months delay due to an alignment of the generalized user 
API for FEA/ROM coupling in development version of VPS2022.0 with the modular material 
(MMAT) user API in the same version. This delay doesn’t affect any project activities, 
deliverables or results. 
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2 Introduction and Overview 
 
In the UPSCALE project, several ROMs were trained in D3.2 and deployed in D3.3 to be able 
to capture the various phenomenon with improved computational costs: 

- A short circuit ROM trained to predict the local short circuit phenomenon from a very 
detailed cell model incompatible with vehicle model  

- A stiffness ROM to predict the stiffness of a cell based on envelope nodal 
displacements and other variables 

 

 
 

Figure 1: Methodology for use of ROMs in UPSCALE project 

 
The current deliverable aims at quantifying the computing efficiency of vehicle models in DMP 
with these various ROMs to gain some understanding and guidelines. 
 

3 Battery risk evaluation with short circuit ROM 
 
In D3.3, we presented the first results with the full vehicle model including a coarse cell modelling 
with a short circuit risk obtained with AI techniques. An important aspect of the computing time 
response of the full vehicle model is the number of solid elements in the macro cell model with 
short circuit ROM.  
 
The homogenized cell model for stiffness was generated in D1.6 based on a detailed cell model 
built in D3.2 and then complemented with an AI short circuit risk. The reference mesh gauge 
was 3 mm. 
 

3.1 Short circuit ROM input and training 
 
As a reminder, the methodology for battery risk evaluation with short circuit ROM is described 
in detail in D3.2. The short circuit ROM building and deployment tools are also described in detail 
in D3.3.  
 

3.2 Computing setup 
 
To perform a meaningful comparison, the models are run on ESI Bruyeres HPC center in France. 
The standard run options on the cluster server are the following: 
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Platform Linux-3.10.0-1127.10.1.el7.x86_64 

CPU Intel(R) Xeon(R) Gold 6150 CPU @ 2.70GHz 

RAM 376Gb 

Solver mode DMP-sp 

Precision Single 

Parallelism Hybrid 

MPI Intel MPI 5.1.3.258 
Table 1 : Parameters of the computation runs  

The models are run with a varying number of processors from 72 to 144 processors. As D1.10 
did not provide significant improvement of the domain decomposition, the standard option for 
crash application was used, Volumetric Coordinate Bisection (VCB). 
 

3.3 Short circuit ROM performance  
 
In D3.3, a first optimization of the computing efficiency with the user material with short circuit 
ROM was performed with optimization of data reading and subcycling of the AI calculation of 
the risk with respect to the mechanical and solver time steps. A subcycling value of 10 was 
deemed suitable to ensure good computing efficiency on a unit cell model. 
 
The same methodology is applied to a modified e-Golf pole impact case with coarse cell models 
including the AI calculation of the short circuit risk for the cell models as provided in D3.2 and 
D1.6. The detail of the e-Golf load case is provided in D5.5.  
 

 
Table 2: Computing time for the modified e-Golf with homogenized cell model with AI short circuit on 72 and 144 cpus skylake 

 
With the proposed subcycling, the computing efficiency of the material enriched with AI for the 
short circuit evaluation seem close to the baseline of the standard honeycomb material: VPS 
material type 42. 
 
ESI Group has developed an internal tool to generate a consolidated performance assessment 
of either one simulation or for a series of simulations based on result and log files. For more 
detail, see D1.10 Using this performance tool to analyze the DMP and scaling as presented in 
D1.10, we reach the following results. 
  

 
 

Figure 2: Computing times comparison and share of various solver operations for the modified e-Golf with homogenized cell 
model with AI short circuit on 72 and 144 cpus skylake, run1 and run2 respectively 
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The scaling ratio between 72 and 144 processors with the honeycomb enriched with short circuit 
ROM is 1.7, which is reasonable for a model with user materials and a high number of solid 
elements. The share of nodal operations and contact does not change significantly with higher 
number of processors, showing the good handling of domain decomposition at higher cpu count. 
 

3.4 Importance of cell mesh gauge 
 
An important aspect of the computing time response of the full vehicle model is the number of 
solid elements in the macro cell model with short circuit ROM.  
 
The battery pack element count is around 1 million added solid elements and with a reference 
mesh gauge of 3 mm. Mesh gauges of 3 to 10mm are evaluated to assess the effect on 
performance. As a note, the 10 mm mesh gauge only ensures one element in cell thickness, 
whereas the 5mm mesh gauge ensures the standard 3 solids in the cell thickness. 
 

 
Figure 3: Element count and visualization for the homogenized cell with different mesh gauges 

 
 
A first analysis on the cell response is performed to ensure the various mesh gauges perform 
with a similar mechanical response as the 3mm mesh gauge homogenized cell model. The force 
displacement behavior is similar for the unit case, except for the folding case where all the mesh 
gauges only approximate the buckling visible on the detailed model. 
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Figure 4: (a) Visualization of cell with internal short circuit ROM for various mesh gauge and (b) force-displacement response 

with various mesh gauges with respect to the detailed model response 

 
After validation that the stiffness is maintained with various mesh gauges, we move to evaluation 
at the full vehicle level. As described in the previous section, the calculation is performed with a 
subcycling of 10 between the stiffness calculation with FEM and the internal short circuit risk 
with AI. 
 

Table 3: Computing time for the modified e-Golf with homogenized cell model with AI short circuit on 72 cpus skylake server 
for various mesh gauges 

 
 
A takeaway is that coarsening the AI enriched elements allow to reach relatively fast 
computations and scaling is reasonable across the various mesh gauges. A tradeoff is to be 
expected in terms of deformation with a 10mm mesh gauge. A mesh gauge of 5mm could be 
preferred to 3mm depending on the computation time requirements.   
 
A similar application of ESI in-house performance tool on the cases with 10 mm mesh gauge 
shows scaling factor of 1.74 and the share of operations depicted below. The scaling does not 
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impact the share of operations. A comparison with the 3 mm gauge case shows that a coarser 
length has a higher share of solver nodal operations and internal forces with respect to contact. 
 
 

  
  
Figure 5: Computing times comparison and share of various solver operations for the modified e-Golf with homogenized cell 

model with AI short circuit on 72 and 144 cpus skylake with 10mm mesh gauge  

 

4 Local-global integration: stiffness ROM with FEA analysis 
 
In EV, short circuits occur at the battery cell level and it is thus this component that we choose 
as the elementary component for reduction in this project. In crash simulations, we cannot easily 
model this cell as a detailed FEA model due to the large number of elements needed, as well 
as the stringent time step requirements of explicit integration schemes in rapid dynamics. Thus, 
a macro model was defined on the pouch where an equivalent stiffness model is computed at 
each time step (See D3.3). 
In this work, we will discuss the integration of our approach in the explicit scheme used in VPS 
via a user element plugin and which will be in the next commercial release of the product VPS 
2022.0. 
  
The user element plugin in VPS will enable us to: 

1. Extract data for the training (offline) stage 
2. Perform a local-global simulation where hybrid computations of a reduced-order model 

and the finite element solver are linked.  

4.1 Model input and training 
 
To integrate the new user element plugin, the VPS input file format was adapted though the 
addition of a new general interface card in which the (interface) nodes are specified explicitly as 
shown in Figure 4.1. The order in which they are specified determines the order in which they 
will be received/sent by the user plugin function from/to VPS.   
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Figure 6: Patch element representation in development framework of general API in ESI VPS 

 

4.2 User element plugin: 
 
 

To solve the semi-discretised (spatial) dynamic equation 𝑀 �̈�(𝑡) =  𝐹𝑖𝑛𝑡(𝑈(𝑡) , �̇�(𝑡))  + 𝐹𝑒𝑥𝑡 in 
VPS, an explicit leapfrog scheme in time is used (see Figure 4.2.) where:  

• M is the mass matrix, 𝐹𝑖𝑛𝑡 is the internal forces depending on the displacement 𝑈 and 

the velocity �̇� 

• 𝑈𝑛, �̇�𝑛 𝑎𝑛𝑑 �̈�𝑛 are the approximation of (respectively) displacement, velocity, and 
acceleration at the time step 𝑡𝑛. We note that in the case of element shell, 𝑈 represents 

the transitional displacement and rotations, whereas the total force 𝐹 represents the 
forces and the moments. 
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Figure 7: Explicit scheme in VPS 

 
The iDMD is implemented as a user element plugin with the following scheme (see Figure 4.3). 
User element plugins for VPS can be implemented in C or Python. Here, we implemented our 
user plugin in python.  
 

Figure 8: iDMD in the explicit scheme of VPS 

 
At each time step, the plugin receives the displacements (translational displacements and 
rotations) and should send back the reaction forces (forces, moments). However, as the nodal 
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forces are not a standard output in VPS explicit, during the training runs that we performed we 
were obliged to use a trick, so-called tied elements, to extract the forces. Unfortunately, there is 
no equivalent way to obtain the moments in VPS. ESI Group will enable the extraction of all 
necessary fields in the training phase in an upcoming version of VPS. The list of planned 
developments is summarised below:  
 

I. During offline (training) stage: extracts data (displacements, rotations, velocity, angular 
velocity, forces, moments).  

II.  During online stage: sets data (forces, moments) 
III.  Able to handle several patches: to apply the iDMD on compressed data by considering 

the pouch as several patches (5 patches, see D3.3). 
IV.  Sets local frame for fields of interests: to be able to perform the local-global integration.  

 
When the pouch receives the displacements from the global structure, they should be 
transformed to the local frame of the pouch as this is the frame in which the training data were 
obtained.  

 
Figure 9: local-global integration frame 

 

4.2.1 User element plugin for offline stage:  
 
During the offline (training) stage, the log_fields() function in the user element plugin is called by 
VPS to extract displacements (coordinates), velocities, angular velocities, forces and moments. 
Global parameters are made available in the plugin interface that can be used to e.g. pilot the 
timestep or number of cycles between each extraction. An example in python can be seen below. 
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Figure 10: “log_fields” python function to collect data (displacement, velocity, force, moment) in the high-fidelity model 

 

4.2.2 User element plugin for online stage:  
 
During the online stage, the compute_internal_forces() function in the user element plugin is 
called by VPS to compute the stiffness matrix at each timestep. Nodal displacements are 
retrieved by the function according to their nearest neighour in the dictionary constructed during 
the training phase. The forces are moments are sent back via the related stiffness matrix. An 
example in python can be seen in the following figure. 
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Figure 11: “compute_internal_function” to compute the stifness matrix and send the forces and the moments 

 
As a first test, we considered 3-point bending. For training data, we extract the displacement on 
the pouch interface 𝑼 = (𝑈1𝑈2 ⋯  𝑈𝑁)  at each time step, the corresponding reaction forces 𝑭 =
(𝐹1𝐹2 ⋯  𝐹𝑁)  and the related stiffness matrices which link each force to the corresponding 
displacement as seen below.  
 
 
 

Figure 12: Stiffness matrix linking displacement to the force 

 
 
So far, in our training runs for the offline stage, we obtain only translational displacements and 
forces (via tied elements). Nodal reaction rotations and moments are not standard outputs for 
the VPS solver. Hence, the computation of stiffness matrix of the pouch in the present test case 
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of 3-point bending is constructed only with displacement and forces. The moments are not 
provided back to the solver during the time integration. 
 
This explains the large discrepancies we observe when we try to use the stiffness matrix of the 
pouch using the results of the high-fidelity simulation. It shows the necessity to use the whole 
stiffness matrix which links the displacements/rotations to the forces/moments.  
 
Nevertheless, we notice that the time step did not drop during the coupled simulation and that 
the overall computation time was less than 20 minutes with a small dictionary on one processor.  
 

5 Stiffness evaluation with Artificial Neural Networks 
 
As a complement to the previous methodology with a coupled stiffness ROM and FEA based on 
an interface and a nodal displacement/force interface, the cell stiffness can be reduced with a 
neural network approach.  
 

5.1 Motivations 
 
ESI has developed for honeycomb and composite applications a neural network driven model, 
which enable to capture complex deformation behaviour in a computing efficient way. [2][3][6] 
This can be viewed as an alternative method to capture stiffness with a ROM, this time based 
on FEA and not on a pure ROM element. This stiffness ROM can also be combined easily with 
the short circuit ROM from section 2 as both models are taking FEA elements strain tensors as 
inputs. 
 

5.2 Background on neural networks 
 
Artificial neural networks (ANN) can be considered as a system of signal processing units. The 
units are thereby arranged in layers, where each layer l can have a distinct number of units n 
(l) N. Each unit is also commonly referred to as neuron. The signal processing of each layer is 
governed by an activation function A(l). Assuming a neural network of n L layers, the first layer 
l = 1 is often referred to as input layer, whereas the last layer l = nL is considered as the output 
layer. However, neural networks can be designed with arbitrary complexity what go beyond such 
classification. More details and information about neural networks and their design and 
implementation can be found in [1][5]. 
 
A sketch of a simple feedforward neural network is shown below. The signal at k-th neuron of 
the l-th layer is defined as: 

 
with A(l) the activation function of the corresponding layer. The function argument zk(l) is a 
composure of the weighted signals p (l−1) s of the precedent layer l – 1. 
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with w and b the corresponding weighting and bias factors, respectively. 

 

 
Figure 13: Feedforward artificial neural network structure 

 
The network parameters (weight and bias factors) are identified in an iterative optimization or 
training process. To this end, a sufficiently large number of input and output data-sets needs to 
be provided as training data. In addition, the user can provide validation data to check the 
learning progress and the accuracy throughout the training. The progress is thereby monitored 
by one or several loss functions. 
 
Thermodynamics based artificial neural networks (TANN) links internal work E with local strain 
ε which is a standard output of FEM solvers and a basis for neural network approximation. 
Stresses 
obtained from 1st order network gradients and tangent stiffness is obtained from 2nd order 
network gradients. This enables training of the neural network based on mechanical response 
as described in the following section. 
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Figure 14: Network activation functions for stiffness ROM with TANN 

 

5.3 TANN model methodology 
 
The neural network is trained by the mechanical material behavior.  
 
A representative volume is extracted from the detailed cell model from D3.2. The detailed 
representative volume element is then loaded in different directions, including multi-direction 
loads to generate an array of elastic-plastic responses. These responses enable the training of 
the TANN stiffness ROM in an offline phase to identify some network parameters, such as layers, 
neurons, weights, and bias factors. In the offline phase, the trained and homogenized TANN 
material model is included as a material law in the software code for each macro element: the 
neural network links strain and stress tensors. This TANN model can be complemented with a 
short circuit risk from D3.2 based on invariant strains and support vector machine (SVM). 
 

 
Figure 15:TANN methodology overview 

 

5.4 Training on RVE cell and homogenization 
 
A model is built from D3.2 with a representative volume of 3mm edge length. The generated 
volume includes the same material and component dimensions as the detailed cell, anode, 
cathode, separator, and includes approximately 1000 solids. To homogenize the stiffness 
trained on the extracted volume, periodic boundary conditions are defined on all edges.  
 
(a) (b) 
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Figure 16: (a) Scheme of periodic boundary conditions and (b) Representative volume element model 

 
The scale bridging between the micro- and the macro scale is accomplished using the HILL 
averaging principle. It relates the macroscopic virtual work density with the volume average of 
the total virtual work on the microscale. 
 
The testing of the representative cell elements and training of the TANN phase is performed with 
an in-house ESI tool which also plots the goodness of the TANN stiffness model for all cases in 
terms of stress versus strains. 
 
(a) 

 
(b) 

 
Figure 17: Comparison of RVE and TANN model responses for (a) a unidirectional load and (b) multi loads 

The TANN model parameters are then exported directly to Fortran code which can be compiled 
and deployed as a user material, see next section. 
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5.5 Model use and deployment 
 
This model, as the honeycomb material with short circuit risk ROM from D3.3 is based on the 
ESI VPS plugin user material framework which enables the user to program his own material 
model as Fortran code, and use the compiled library during a run, eg. on the full vehicle 
simulation. The TANN model for stiffness ROM, possibly with short circuit risk, is embedded in 
a compiled material library that can be deployed on a HPC cluster.  
 
The plugin library is identified with a library name indicated by the user in the cell material card. 
At each computational time step, the user routine gets each solid strains, calculate the stiffness 
and the short circuit from the models described in the previous section and in D3.3, respectively. 
 

 
 

Figure 18: Scheme of resolution with TANN model for stiffness 

 

5.6 VPS material card 
 
The TANN model for the stiffness ROM embeds the TANN parameters directly in the library The 
2 parameters that can be accessed by the user are the CXX field to set up some user imposed 
stiffness parameter to drive the time step of the model, instead of the stiffness value obtained 
by the TANN model. In addition, the cycling parameter SCYCLE enables the user to tune the 
stiffness ROM calculation with respect to the full vehicle crash simulation. Typical stiffness 
calculation cycling are between 1 and 50 and higher values make the computation of the 
stiffness ROM faster, at the expense of accuracy. 
 
The additional fields set up the risk ROM parameters as explained in D3.2 and D3.3. The AI 
short circuit tool from D3.2 generates the short circuit ROM as a series of files storing the 
required classification and regression algorithms. The tool is extended to store the model 
information in data readable by the user plugin in VPS: table entities. The risk ROM can then 
predict an internal risk based on the strain field of the stiffness ROM.  
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Figure 19: VPS material card for user library including TANN stiffness ROM and AI short circuit ROM 

 

5.6.1.1 User material library use  
 
A technical description of the user material card is provided above. 
 
Similar as the short circuit ROM, user material plugin for VPS are usually identified by a name 
“ULIB” and different for simple and double precision launch of the solver. For example, a material 
called “mat85_short_circuit” for simple and double precision will be named the following: 

 
 
The plugin material can be selected at launch by setting the PAMSHARE variable prior to launch 
of the VPS solver. This can be performed on a Linux OS HPC by the following: 
 
export PAMSHARE=”user/path_to_plugin” 

pamcrash model.pc 

 

5.7 Stiffness ROM material performance  
 
The TANN user material library is first assessed on a unit cell case for performance reason and 
computing cost of the model. This enables tuning of the subcycling and of time step controls 
which are the most critical parameters for cpu performance. 
 
The internal stiffness estimation within the stiffness ROM may impose some lower time step 
than imposed by the element gauge in the coarse cell model (0.02µs versus 0.05 µs). This can 
significantly slow the calculation with the stiffness ROM. Stiffness and mass driven time step 
controls are added to ensure a time step close to the time step of the vehicle of 0.05 µs. This 
significantly improves the performance.  
 
Another important parameter is the cycling of stiffness update with the neural network with 
respect to the time step of the solver. Values of 1 to 50 are tested and accuracy is compared. A 
value between 10 and 50 in terms of subcycling seem the good optimum for accuracy and cpu 
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efficiency and reach a similar computing time as the pure physical model. The various cases are 
summarized below. 
 

 
Table 4: Computing time for the cell model with stiffness ROM and short circuit ROM for various values of subcyling for the 

stiffness calculation update on 10 processors 

The same stiffness ROM model is assessed on the modified e-Golf in a pole impact scenario to 
assess computing efficiency and scalability with the number of processors (DMP) with a stiffness 
update every 50 cycles. The model is slightly more costly than the standard honeycomb material 
model with a 20% increase in CPU time. This added cost could be further reduced with an 
increased subcycling rate over 50 but the effect on mechanical accuracy should be evaluated. 
 

 
Table 5: Computing time for the cell model with stiffness ROM and short circuit ROM for various values of subcyling for the 

stiffness calculation update on 10 processors 

5.8 Effect of mesh gauge on performance 
 
Similarly as for the short circuit ROM, the neural net driven model is estimated for various mesh 
gauges and number of processors to estimate its DMP scaling and computing efficiency. This is 
assessed on the same modified e-Golf in a pole impact scenario as in the previous section. 
 

 
Table 6: Computing time for the modified e-Golf model with the TANN stiffness ROM approach on 72 skylake processors with 

final time 80ms for various mesh gauges 

 
The TANN model scales well with number of processors and reducing the mesh gauge 
significantly decreases the computing time of the model. The computing time is increased 
slightly as compared to the short circuit ROM but of the same order of magnitude with the correct 
subcycling. As a note, the TANN stiffness ROM could possibly accommodate coarser mesh 
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gauge than the honeycomb material law due to having more degrees of freedom within its 
training. 
 

6 Possible risks and recommendations 
 
The stiffness ROM based on IDMD method as described in section 4 has several attached risks 
which may prevent a successful deployment on the full vehicle in a timely manner: 

- The ROM model deployment in the general interface API is still ongoing improvement at 
the unit cell level  

- The general interface API will be available in the next VPS version which will be 
available to partners early 2022, which will leave little time to partners to test and iterate 

- The stiffness ROM does not yet include the short circuit risk from D3.2 and the method 
would need to be adapted from the current approach 

 
To mitigate this risk, the approach described in section 5 is proposed: a stiffness ROM based 
on a neural network (TANN). It is already compatible with the short circuit risk from D3.2 and 
can be computed on vehicle model with a preliminary DMP assessment and guidelines. 

7 Conclusions 
 
An overview of computing efficiency and deployment in FEA code was provided for: 

- A honeycomb material model enriched with a short circuit ROM  
- A stiffness ROM based on IDMD and interfaced with FEA code leveraging a generic 

interface API 
- A neural net material model (TANN) to represent the stiffness ROM which can be 

complemented with a short circuit ROM 

 
For the various methods, the effect of mesh gauges and number of processors was investigated 
to produce some reference times, optimize the computing efficiency and provide some 
guidelines for full vehicle simulation with AI models. 
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