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 Executive Summary 
This report is a part of work package 2, focusing on AI based design for Aerodynamics, and 
describes the work performed in Task 2.5, including subtasks 2.5.1 and 2.5.2 and 2.5.3. The 
results are used to drive the activity in work package 4. 
 
The main goal of Task 2.5 is to integrate methods and tools developed in previous tasks into 
an optimization tool to be used for the aerodynamic development of new vehicles. A full 
workflow, starting from the geometric parametrization and aiming to the best aerodynamic 
shape identification is presented, exploiting machine learning tools for aerodynamic 
coefficients prediction. 
 
Capabilities of the developed workflow are compared to state-of-the-art technologies generally 
used among OEMs for the aerodynamic design optimization. Several non ML based 
optimization approaches, from more conservative to more aggressive, are taken into account 
to be considered as reference condition. 
 
Applications on simplified shapes following these approaches are presented, to verify the 
capability of the developed process to correctly predict shape variation effect on aerodynamic 
performance. A comparative analysis between ML method and standard methods is 
presented, in order to try to assess potential benefits of the produced output. 
 
This deliverable doesn’t deviate from the plan in regard to its content. 
This deliverable deviates from original planning in terms of delivery time (from M36 to M42). 
The delay is mainly related to reporting activity, while technical activity was completed in time 
and all the required outputs were delivered to WP4 in order to allow the application of the 
developed technologies on industrially relevant cases, without significant consequences on the 
final outcomes of the project. The main reason of the delay was an internal re-organization of 
the company of the author of the deliverable (CRF), causing an unplanned reduction of the 
activity on the work package. The discrepancy between planned/performed activities is 
reflected also on claimed costs from the partner. 
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 Optimization workflow overview 
 
This task of the project consists in the coupling of the developed workflow for the prediction of 
the aerodynamic coefficients with an optimizer, in order to be able to drive the design of new 
vehicles from an aerodynamic point of view.  
 
One of the main bottlenecks of current state-of-the-art CFD optimization processes is the large 
computational times required for the design space exploration with high-fidelity models. 
Reduced order models, by definition characterized by more affordable cost, will be exploited in 
order to try to speed-up the whole process. Machine learning based methods developed in the 
previous tasks are here summarized, in conjunction with an optimization workflow having 
aerodynamic coefficients (Cd) as target.  
 
In this chapter a general overview of the whole process, from geometry parametrization to 
optimum identification, is presented. This methodology is then delivered to Work Package 4, to 
be used for the optimization of actual vehicle shapes (city car and SUV). 
 
 
 

2.1. Geometry parametrization 
 
General approach used for aerodynamic optimization starts from a parametrization of the shape, 
that can be obtained directly with a parametric CAD or within specific CAE pre-processors and 
CFD software. The most common process in use among OEMs for production activities is 
generally the latter due to the easier integrations into CFD workflows. 
 
An automated tool for geometry morphing setup and execution has been in developed in BETA 
CAE ANSA® environment, since the pre-processor is available among all the partners involved 
in the project and is generally the most used tool in the worldwide aerodynamic community.  
 
The developed tool is able to create about twenty different “standard” geometrical parameters, 
requiring as input only a naming convention. In the list of the available parameters the most 
common geometrical modifications that are of interest in the early development phase, when 
generally significant style modifications are allowed, have been included. The current available 
parameters that can be generated are reported in Table 1: 
 
 
Table 1: List of parameters generated by the automatic tool 

ID Parameter Name Parameter Description 

1 SpoilerAngle Rotation of the rear spoiler 

2 TailLightSpan Y-position of the tail-light 

3 CpillarNolderSpan Y-position of the C-pillar nolder 

4 RearWindowSlide Extension of the roof 

5 RearWindowZtranslation Z-position of the roof trailing edge 

6 RearEndTaperRatio Boat-tailing of the upper body 

7 RockersYtranslation Y-position of the rocker/door-sill 

8 WindscreenXtranslation X-position of the windscreen trailing edge 

9 WindscreenZtranslation Z-position of the windscreen trailing edge 

10 HoodZtranslation Z-position of the hood trailing edge 
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11 HoodXtranslation X-position of the hood trailing edge 

12 FrontWheelCovering Modification of the front bumper in front of 
wheel region 

13 AirIntakeLowerYtranslation Lower air intake Y extension 

14 AirIntakeLowerZtranslation Lower air intake Z extension 

15 AirIntakeMiddleYtranslation Middle air intake Y extension 

16 AirIntakeMiddleZtranslation Middle air intake Z extension 

17 AirIntakeUpperYtranslation Upper air intake Y extension 

18 AirIntakeUpperZtranslation Upper air intake Z extension 

19 FrontWheelSpatsHeight Front wheel spats Z-extension 

20 RearDiffuserZtranslation Rear diffuser angle 

 
The generation of the parameters is driven by a python script that can be launched directly in 
ANSA environment. Current list of parameters could be easily extended to similar geometry 
modifications (translations, rotations, …), thanks to the modular setup of the script. 
 

 
 

Figure 1: Extract of the script to generate parameters 

 
 
An example of PID definition required by the tool is shown in Figure 2: 
 
 
 

 
Figure 2: Example of PID definition on the ANSA model 

 
An example of morphed shape obtainable with the abovementioned parametrization (spoiler 
angle) is visible in Figure 3: 
 



                      D2.5 Assessment of AI/ROM based optimization 
performances with respect to state-of-the-art methodologies 

 

 9 

 
 

Figure 3: Example of deformation obtainable with the automatically generated “SpoilerAngle” parameter 

 
The parametrization based on this approach is able to reduce the timing for this phase of about 
one order of magnitude, considering the same number of parameters, with respect to a typical 
manual approach generally used in the automotive industry. 
 
The tool has been delivered to all partners in Work Package 4 to be used for the geometrical 
parametrization of the industrial vehicles involved in the application phase of the project. 
 

2.2. DOE shape generation 
 
In order to train surrogate models an initial dataset of CFD configurations needs to be 
generated: in the proposed workflow these shapes are generated by shape morphing. The 
initial dataset, however, can be populated following different approaches (parametric CAD, 
available geometries from previous programs, style proposals, …). 
 
Considering the shape morphing approach and a number of geometrical parameters between 
10 and 15, according to experience developed in Work Package 1 and previous tasks of Work 
Package 2, a number of different shapes of the order of one thousand is required to achieve a 
reasonable accuracy in the prediction of aerodynamic coefficients and flow fields. This can be 
considered a limitation of the proposed approach, similarly to all AI techniques: if data are not 
already available, the “offline” phase could be a bottleneck in terms of time consumption. 
 
Proposed approach relies on SOBOL sequences generation, quasi-random techniques able to 
fill the sampling space in a uniform way, without recognizable patterns. 
 
 

2.3. Offline data generation 
 

In this section, the workflow prior to the training procedure and the framework for automating it 
is described. This framework is robust and capable of handling different types of datasets, and 
either 2D or 3D geometries.  

The workflow in brief includes: 

1) geometry generation (see Section 2.2) 

2) meshing (helyxHexMesh for 3D cases)  

3) setup CFD configuration (caseSetup) 

4) running the CFD solver (helyxCoupled) 
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5) resampling and additional post-processing of the results (helyxSample) 

6) transformation of the data obtained by CFD to a format compatible with the ML library 

The whole workflow, as it is proposed in this work, is performed using ENGYS® OpenFOAM 
(1) and it is performed automatically for each configuration of the DOE. Additional details are 
available in D2.2. 

 

Figure 4: CFD workflow from volume mesh to data extraction 

In the application example exposed in this deliverable (DrivAer 2D closed AGS, see D2.2 for 
test case description and (2)) the whole initial set of data was available from previous activity 
in the work package, and the generation of these “offline” data was not necessary for the 
developed optimization workflow. 
 

2.4. Predictive model 
 
The aerodynamic coefficients are predicted here by a regression tool, having as input the 
physical (CAD) parameters of each sample. More details about the regressor can be found in 
D1.3, section 3.4. The regression tool was preferred over the ANN classification architecture, 
which was described in detail in D2.2, due to its robustness and its lower computational cost. 
In addition, following the former methodology there is the capability to use as inputs the 
parameters from the latent space of the auto-encoder and thus, making the process more 
generic in the event of not having the physical CAD parameters of the samples. 
 
Here, in order to make the regression tool as accurate as possible, the whole dataset 
consisting of 1050 samples has been used as the training dataset. The predictions which will 
be performed, will be for the geometries generated by the genetic algorithm (see next section) 
and therefore, CFD data won’t be available. CFD verification will be performed for the optimum 
geometry which will be found in the end of the optimization loop. Different regression tools 
have been employed, such as Linear regression of 1st and 2nd order, Gradient Boosting, KNN, 
ANN and Kriging. Based on previous numerical experiments (see Table 3 in D1.3), Kriging 
was selected here as the most accurate tool for predicting drag coefficient. 
 

2.5. Optimization process 
 
The above-mentioned predictive tool has been combined with a genetic algorithm optimization 
library to find new more aerodynamic shapes, i.e. to minimize the drag coefficient. For that 
purpose, PyGAD library (3), which is an open-source Python toolkit for evolutionary algorithms 
and compatible with PyTorch, has been employed and incorporated in the workflow. The drag 
coefficient of the new species is predicted by the regression tool instead of the traditional CFD 
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calculation and thus, the whole process is less computationally intensive and can be 
performed in real time. 
As a preliminary investigation, a single objective optimization experiment was performed (drag 
coefficient minimization), while the CAD parameters were restricted to their acceptable range, 
in accordance with the parameter range introduced in the original closedAGS database. 
PyGAD works with a maximization function, i.e. the solution evolves towards the direction that 
the fitness function is maximized. The fitness function introduced here is: 
 

 

(Eqn 1) 

 
since the objective is to minimize the drag coefficient. 
The above methodology will be expanded in WP4 to multi-objective experiments for 3-D real 
car geometries, where the mass flow rate and the drag coefficient will be predicted by the 
regression tool and the second objective (mass flow rate) will act as a restriction i.e. mass flow 
rate should be higher than the 90% of the mass flow rate of the baseline case. 
 

 Reference optimization methods 
 
In this chapter an overview of the chosen optimization approaches to be used as reference is 
presented. Most popular optimization workflows in use among car makers for aerodynamic 
optimization can be divided into two different categories: standard optimization methods (4) 
and adjoint-based method (5) (6). In this activity only the first category is considered, since 
more similar with respect to what is implemented here. 
 
One of the main bottlenecks of these processes is the large computational times required for 
the design space exploration with high-fidelity models, reason for which they can be coupled 
with Response Surface Method techniques. Two different optimization setups are considered 
here: one more conservative, where all configurations requested by the optimizer are 
evaluated with full CFD simulations, and one more aggressive by coupling different stages of 
“virtual” space exploration and CFD verifications. More details on the adopted workflows are 
reported in the following paragraphs. 
 
Optimizations are driven by ESTECO® modeFRONTIER commercial software, using a Non-
dominated Sorting Genetic Algorithm II (NSGA-II) 
 
 
 

3.1. Full CFD-based approach 
 
In this approach the optimization driver is directly coupled with the high-fidelity data: each 
configuration requested from the algorithm is evaluated by a full CFD simulation. 
 
Size of the population is equal to the number of the cases in the initial DOE: for the 
optimization of the 2D DrivAer shape with this approach 50 individuals are selected with a 
random algorithm. A maximum number of 50 generations is fixed, all parameters of the 
optimizer are setup according to Figure 5: 
 



                      D2.5 Assessment of AI/ROM based optimization 
performances with respect to state-of-the-art methodologies 

 

 12 

 
Figure 5: NSGA-II setup for full-CFD optimization approach 

 
 

3.2. Mixed CFD-RSM-based approach 
 
In this approach the optimization driver should guarantee faster convergence. This FAST 
optimizer uses Response Surface Models (Meta-Models) to speed up the optimization 
process. 
 
FAST is an optimization algorithm combining real and RSM-based (virtual) optimization 
strategies. Both real and virtual optimization are performed by one of the evolutionary or 
heuristic algorithms for solving single and multi-objective problems.  
 
FAST search scheme: 
 

• 3 RSMs are trained for each objective and constraint using a database of designs: 
Polynomial SVD, Radial Basis Functions and Kriging  

 

• The chosen optimization algorithm (NSGA-II) performs in parallel both the real and the 
virtual optimization.  

 

• Candidate designs coming from the virtual optimization/virtual exploration and the real 
optimization phases are sent to the CFD solver for evaluation 

 
The fitness of the RSM previously used for virtual optimization is evaluated using a 
performance metrics (mean normalized error). More details on the approach can be found in 
software user guide (7). 
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Figure 6: Setup of FAST-NSGA-II algorithm 

As in the previous case an initial population of 50 individuals is generated with a random 
algorithm, then for this approach a maximum number of 20 generations is fixed for the 
optimization of the thirteen geometrical parameters on the 2D DrivAer model. 
 

 Application on DrivAer 2D model 
 
DrivAer 2D shape with 13 different geometrical parameters is here optimized following 
procedure developed in UPSCALE project and with the two identified reference methods. 
Target is the optimization of the drag coefficient.  
 

4.1. UPSCALE workflow 
 
The same workflow as in the previous deliverables (D2.2, D2.3) of WP2 has been employed in 
the present work. The only difference is that the workflow has been enhanced by the 
optimization tool, which has been added in the loop. 
 

 
Figure 7: Workflow including CAD design, CFD analysis and regression in conjunction with optimization. 

Regarding the ML-based method, the CFD-related workflow is only needed to create the DOE 
and calculate the aerodynamic coefficients for each sample. This is necessary as these values 
will be used for training the regressor. Apart from the aerodynamic coefficients, only the CAD 
parameters of each sample are needed for predicting the optimal shape, which is expressed in 
terms of the CAD parameters. Then, a CFD analysis is performed to verify the results of the 
new geometry and check if indeed it has a more aerodynamic shape than the existing ones. 
 

The regression toolkit in connection with the evolutionary algorithm (PyGAD) found a new 
optimal which has lower drag coefficient than the minimum value documented in the closedAGS 
database (Cd=0.1594). The new shape has physical parameter space: 
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zphysical = [1.0, 1.5, -0.2, -1.0, -1.0, -0.5, -1.0, -1.5, 1.6, -1.0, -1.0, 50.0, 1.0] 

and the drag coefficient was predicted to be Cd =0.1436.  

A CFD simulation on the optimal configuration identified by the evolutionary algorithm coupled 
with the predictor is performed, scoring a  Cd value of 0.164. Final improvement obtained with 
respect to the baseline (Cd =0.233) is still very significant, anyway the discrepancy between 
the prediction and the confirmation is not negligible in this case. 
 
 

4.2. Reference workflow  
 
Results obtained by the “full-CFD” workflow and “mixed-CFD-RSM” workflow on DrivAer 2D 
problem are reported in the following paragraphs. 
 
 

4.2.1. Full CFD-based approach 
 
Overview of the workflow is presented in Figure 8, while the convergence history of the 
optimizer is shown in Figure 9. 
 

 
Figure 8: modeFRONTIER workflow for full CFD optimization 
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Figure 9: Convergence history of the NSGA-II algorithm 

 

This approach found an optimal configuration (ID 1681) which is characterized by a Cd of 0.159 
(evaluated by full CFD simulation). The new shape has physical parameter space: 

zphysical = [0.6, -0.7, 0.2, -1.0, -0.2, -0.5, 0.6, -1.5, 1.6, -1.0, -1.0, 5.0, 1.0] 

A total number of 1733 complete CFD simulations is performed. 

 
 

4.2.2. Mixed CFD-RSM-based approach 
 
Overview of the workflow is presented in Figure 10, while the convergence history of the 
optimizer is shown in Figure 11. 
 

 
Figure 10: modeFRONTIER workflow for CFD+RSM optimization, using FAST tool 
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Figure 11: Convergence history of the FAST-NSGA-II algorithm 

 

This approach found an optimal configuration (ID 967) which is characterized by a Cd of 0.170 
(evaluated by full CFD simulation). The new shape has physical parameter space: 

zphysical = [0.0, 0.9, 0.8, -0.2, -0.6, 1.1, 0.6, 1.3, 1.6, -1.0, -1.0, 40.0, 1.0] 

A total number of 1000 complete CFD simulations is performed. 

 

 Methods comparison 
 
A comparison between the different optimization methods is reported in the table below: 
 
Table 2: Comparison of the optimization results 

 Optimum Cd 
(CFD) 

Number of high-fidelity 
evaluations required 

UPSCALE workflow 0.164 1000+1 

FULL-CFD workflow (ref) 0.159 1733 

CFD-RSM workflow (ref.) 0.170 1000 
   

BASELINE 0.233  
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In terms of optimum identification (lowest Cd configuration) the more conservative approach 
based on 100% CFD calls confirmed to be the best one, in front of a higher requirement of full 
CFD evaluations. 
 
The optimum identified with the developed process is instead better with respect to the tested 
reference mixed CFD+RSM approach, requiring a similar number of tested configurations. It 
needs to be pointed out that all the CFD evaluations required by the first one are related to the 
initial dataset generation, with just one additional simulation as final verification. A huge benefit 
in terms of run-time can be expected, on the other hand, if a parameter free ML environment 
could be used to exploit already available shapes without the need to create ad-hoc the 
training data.  
 
An overview of the obtained shapes by the different optimizer is presented in Figure 12, 
compared with the baseline geometry. 

 
 

Figure 12: Comparison of the final shapes obtained by different optimization approaches 

 

 Conclusions and Future Work 

An overview of the optimization workflow developed in the UPSCALE project is summarized in 
this deliverable, combining all the findings and technologies developed in work packages 1 and 
2. The tool is delivered to work package 4, in order to verify the capability of the method also on 
completely industrially-relevant models. 

In addition to that, a comparison of the workflow is performed with respect to typical optimization 
approaches currently in use among OEMs to optimize the aerodynamic performance of the 
vehicles. The test case is performed on a simplified 2D DrivAer shape, but conclusions can be 
extended to most complex geometries with respective scaling factors in terms of run-time. 

The comparison underlines how the developed method is able to carry out an optimization of 
the shape of the vehicle, leading to significant improvements in terms of drag coefficient. On the 
other hand, some limitations are still visible from the process: 

• Even if a strong improvement with respect to the baseline is found, the predicted optimum 
is not completely confirmed by the higher-resolution method, not leading to the global 
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optimum (to the best of our knowledge) of the problem. The comparison with respect to 
the FAST algorithm used in this application, on the other hand, is definitely encouraging. 

• One of the bottleneck in terms of run-time of the methodology remains the need to 
create a big initial set of data with high-resolution methods to train the predictor. A huge 
benefit in terms of run-time can be expected, on the other hand, if a parameter free ML 
environment could be used to exploit already existing results. This point can be 
indicated as one of the most interesting area of research for future activities and 
projects.  
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