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the two most HPC intensive CAE-applications have been chosen as use cases for the project: 
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needed to improve product quality. Through the combined effort of universities, research 
laboratories, European automotive OEMs, software companies and an AI-SME specialized in 
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produce novel AI-based CAE-software solutions to improve European automotive 
competiveness. 
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 Executive Summary 
 
The purpose of this activity is to develop a numerical tool that is capable of handling 
heterogeneous aerodynamic data, i.e. data that is coming from different sources with different 
degrees of fidelity, and to combine it into a predictive model with higher accuracy as compared 
to a model stemming from single-fidelity data only. To that end, we applied the recently 
developed methodology for multi-fidelity data fusion [1], which was investigated also in 
deliverable D4.2, to a combination of low-fidelity (Reynolds-Averaged Navier-Stokes, RANS) 
and high-fidelity (Detached-Eddy-Simulations, DES) simulations of the UPSCALE limousine 
test case (see deliverable D4.1). It is shown that adding RANS simulations as low-fidelity input 
can indeed improve a predictive model based purely on DES snapshots. In the investigated 
case, however, the improvement is even bigger when replacing the RANS data by a low-order 
model of the DES data itself, thus confirming the procedure outlined in D4.2. 
 
This deliverable does not deviate from the plan regarding to its content or delivery time. 

 Available Data 
 
In principle, sources of aerodynamic data employable for building a heterogeneous predictive 
model are wind tunnel measurements with different vehicle scales, road tests, as well as 
steady and unsteady numerical simulations of varying fidelities. A certain degree of data 
consistency is, however, required to combine the different fidelities into a single model. In the 
investigated case of predicting the effect of geometric variations, this requirement translates 
into a geometric consistency among the different sources: one has to make sure that all 
geometric variants can be represented within a common design space, i.e. with the chosen 
geometric parameters. According to the experience of the three vehicle OEMs of UPSCALE, 
this requirement can usually not be met between hardware experiments like wind tunnel 
measurements or road tests on the one hand and simulations on the other. As hardware tests 
take place in a later stage of the vehicle development process, their geometries do, in general, 
not correspond in all details to the ones that were simulated during the purely virtual 
development phase. And the few simulations that are run accompanying the hardware-based 
development are not enough to build a decent surrogate model. As a result, from a 
practitioner’s point of view, we are left with numerical simulations of different fidelities as data 
sources for multi-fidelity models. 
 
Therefore, we decided to use a combination of DES and RANS simulations to investigate the 
possible benefit from multi-fidelity modelling and wanted to know in particular if adding an 
appreciable number of RANS snapshots as low-fidelity data to rather coarsely sampled DES 
computations, which are todays’ standard fidelity in automotive aerodynamics, can improve the 
accuracy of a drag prediction model that is based solely on DES data. The chosen test case is 
the UPSCALE limousine: the Volkswagen Jetta Hybrid (see D4.1) parameterized with 12 
design variables.  
 
The 301 RANS snapshots employed for training were the same as in D4.2: the baseline 
geometry of the Jetta plus 300 samples following a Sobol sequence. They were run for 4000 
iterations with Helyx®, and the drag coefficient was averaged over the last 1000. Mesh sizes 
were around 52M cells. 
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With Helyx® in DES mode, we created in total 125 snapshots: the baseline geometry plus 74 
samples that follow the same Sobol sequence as the RANS snapshots. For these 75 variants, 
which were used for training, we therefore have both DES and RANS data. In addition, we ran 
50 DES samples following a Latin Hypercube that were set aside as test data. The DES cases 
ran for 4 physical seconds, and the last 1.5 seconds were averaged to obtain the drag 
coefficient. In order to reduce the computational budget to an affordable amount, we chose a 
meshing setup that resulted in cell counts of about 60M. 
 
Fig. 1 depicts the correlation plot for the 75 training samples between the RANS and DES drag 
coefficients. Surprisingly, they are rather uncorrelated. We will look into the possible reasons 
for this poor correlation further down in this report. For the time being, we just note that given 
this lack of correlation, it is apparently not straightforward at all to make good use of the RANS 
data to improve a single-fidelity DES model and requires a robust multi-fidelity modelling 
strategy.  
 

 
 

Figure 1: Scatter plot for the drag coefficients of the 75 training samples obtained by DES and RANS, respectively. 
The green line corresponds to the identity, and the red dot marks the baseline geometry. 

 

 Multi-fidelity Modelling Results 
 
Building upon the positive experience from D4.2, where we tested the multi-fidelity modelling 
approach from Romor et al. [1] – albeit in a different setting, we teamed up again with the 
authors of this method and employed it here. In essence, the method consists of a 
concatenation of different single-fidelity models: the first model is built upon low-fidelity input 
only and makes a prediction of correspondingly poor quality, while the second takes the output 
of the low-fidelity model AND the high-fidelity data as input to make a high-fidelity prediction. It 
is possible to add more models to this hierarchy to accommodate for more than two fidelities. 
For a detailed description and possible augmentations we refer to [1]. 
 
In total, we created four surrogate models: 

i. A 12-dimensional single-fidelity Kriging-model based solely on the 75 DES training 
snaphots as a reference (“DES” in Fig. 2). 
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ii. A multi-fidelity model using the 75 DES training snapshots as high-fidelity and the 301 
RANS snapshots as low-fidelity data (“MF-DES-RANS”), following the procedure of [1]. 

iii. A single-fidelity Kriging-model based on the one-dimensional Active Subspace [2] of the 
DES training data (“AS”). The Active Subspace method is a dimensionality reduction 
method that – in its simplest form of application – identifies the one direction in 
parameter space along which the objective function exhibits the largest variation. This 
direction is a linear combination of the original parameters and is then used as the 
single design variable for the surrogate. 

iv. A second multi-fidelity model according to [1], again with the DES training data as high-
fidelity input, but in contrast to model (i) with the output of model (iii) as the low-fidelity 
data (“MF-DES-AS”). 

 
The accuracy of the models is evaluated by the R2-score obtained for the 50 DES test data 
points. In order to assess how much the results change when the test dataset is perturbed a 
bit, a leave-one-out cross-validation on the test data is performed and shown in Fig. 2. Given 
the coarse sampling of 75 snapshots in a 12-dimensional design space, the poor R2-score of 
0.816 of the single-fidelity DES model (i) does not come as a surprise. It is roughly on a par 
with the 1-dimensional AS model (iii), which usually indicates insufficient samplings. However, 
the important findings are: 

a. The multi-fidelity method operating on DES and RANS data (model ii) does improve the 
single-fidelity accuracy, despite the observed poor correlation between the RANS and 
DES drag data: the R2-score increases by ~5% to 0.854. With respect to the spread of 
the R2-score across the different folds, this increase is marginal only, but statistically 
significant. We can thus conclude that the multi-fidelity modelling approach works as 
expected. 

b. The most accurate model, and on top with the smallest spread across the folds, is the 
multi-fidelity model (iv), which does not rely on RANS data at all, but purely on the DES 
snapshots – used, however, in a multi-fidelity approach. The R2-score increases by 9% 
as compared to the reference model (i). It is the same order of improvement that was 
observed in D4.2, where a similar approach was used for lack of a separate source of 
low-fidelity data. 

 

 
Figure 2: The R2-scores of the different surrogate models as obtained by a leave-one-out cross-validation, along with 
their standard deviation and minimum and maximum values across the folds. 



                 D2.4 Validated tool to handle and rationalize 
aerodynamic data from heterogeneous sources 

 
 

 9 

That the purely DES-based multi-fidelity model (iv) outperforms the combined DES/RANS 
model (ii) can be attributed to the poor correlation between our RANS and DES results. For 
completeness, we looked into the reason for this lack of correlation: Fig. 3 (left) shows the 
contributions of the 12 parameters to the direction of highest variation in the objective function, 
as determined by the Active Subspace method. For both the 75 DES training samples and 
their RANS counterparts, the parameter with the dominant influence is no. 1 – the elevation 
angle of the rear spoiler (“PARAM-spoiler-Y-angle”, see D4.1). DES and RANS disagree, 
however, on the effect of this one parameter on the drag coefficient (Fig. 3, right): while the 
DES computations predict a decrease in drag for increasing spoiler angles, the opposite is true 
for the RANS computations. With the effect of the dominant parameter being predicted 
contrarily by RANS and DES, it almost comes as a surprise that the multi-fidelity method 
combining these two data sources can benefit at all. It certainly speaks for the robustness of 
this approach, but also calls for higher data coherence among the heterogeneous sources in 
future applications of this method. 
 
 

 

 
 

Figure 3: The contributions of the 12 original parameters to the direction of highest drag variation in the design space 
for both RANS and DES (i.e. the “first eigenvector” in the nomenclature of the Active Subspace method, left), and the 
drag coefficient as a function of the dominant parameter “PARAM-spoiler-Y-angle” (right, top: DES, bottom: RANS). 
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 Conclusions 
 
In collaboration with F. Romor, M. Tezzele and G. Rozza from SISSA (Trieste), we 
successfully applied their multi-fidelity modelling approach to the UPSCALE limousine test 
case. Two multi-fidelity models for the vehicle drag coefficient were created, which both use 
the DES computations as high-fidelity data, but differ in the source of the low-fidelity data: one 
model employs RANS computations while the other relies on a one-dimensional model of the 
DES data obtained by the Active Subspace method. 
 
Both models outperformed the single-fidelity DES model, which confirms the validity of the 
approach for industrial test cases of this kind. Due to a poor correlation of the computed drag 
coefficients between RANS and DES, the accuracy improvements of the combined 
RANS/DES model are, however, only minor. It is questionable if – for this particular test case – 
the additional effort for the 301 RANS computations (corresponding to roughly 30 additional 
DES simulations) pays off as compared to a hypothetical single-fidelity model upgraded by 30 
more DES samples. But for cases with a better correlation among the heterogeneous sources 
this will probably be the case. 
 
In the investigated case, the highest accuracy can be achieved when removing the reliance on 
RANS data entirely in the second multi-fidelity model. It has the additional advantage of 
coming at no extra computational cost – apart from the modelling effort itself, which is 
negligible compared to the aerodynamic computations. This confirms the observation made in 
deliverable D4.2 and qualifies this approach as the most promising for actual applications in 
the vehicle development process. 
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