
www.upscaleproject.eu 

 

 

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement Nº 824306. 

  

 

 

Upscaling Product development Simulation Capabilities exploiting Artificial inteLligence 

for Electrified vehicles 
 

D2.3 Assessment of reduced order 

models for aerodynamic performance 

prediction 
Authors 

Nikolaos Kyriazis, Eugene De Villiers – Engys 

Markus Mrosek , Carsten Othmer – VW 

Luca Miretti – CRF 

Enric Aramburu, Bhanu Prakash, Charalampos Tsimis, Albert Rodriguez de Liebana – IDIADA 

Patrik Bangert – Algorithmica Technologies 

Guglielmo Minelli, Per Hamlin – Volvo Cars 

03/2021 

 
 

Ref. Ares(2021)2930074 - 03/05/2021



                      D2.3 Assessment of reduced order models for 
aerodynamic performance prediction 

 

 2 

Project Details 

  
The UpScale Project 

 
The UPSCALE (Upscaling Product development Simulation Capabilities exploiting Artificial 

inteLligence for Electrified vehicles) goal is demonstrating the feasibility of using AI enhanced 

CAE methods in EV development processes, such as vehicle aerodynamics, battery thermal 

modelling and crash simulation and leading the deployment of AI tools for other CAE 

applications. UPSCALE is the first EU-project that has the specific goal to integrate artificial 

intelligence (AI) methods directly into traditional physics-based Computer Aided Engineering 

(CAE)-software and –methods. These CAE-tools are currently being used to develop road 

transportation not only in Europe but worldwide. The current focus of the project is to apply AI-

methods to reduce the development time and increase the performance of electric vehicles 

(EVs) which are required by the automotive industry to reduce global emission levels. High 

performance computing (HPC) and CAE-software and –methods play a decisive role in vehicle 

development process. In order to make a significant impact on the development process, the 

two most HPC intensive CAE-applications have been chosen as use cases for the project: 

vehicle aero/thermal- and crashmodelling. When considering total automotive HPC usage, 

approximately 20% is used for aero/thermal simulations and up to 50% of HPC resources are 

utilized for crash simulations. By improving the effectiveness of these two areas, great increases 

in efficiency will lead to a 20% reduction of product time to market. Other novel modelling 

approaches such as reduced order modelling will be coupled to the AI improved CAE-software 

and -methods to further reduce simulation time and ease the application of optimization tools 

needed to improve product quality. Through the combined effort of universities, research 

laboratories, European automotive OEMs, software companies and an AI-SME specialized in 

machine learning (ML), the UPSCALE project will provide a unique and effective environment to 

produce novel AI-based CAE-software solutions to improve European automotive 

competiveness. 

PROJECT TITLE Upscaling product development simulation 
capabilities exploiting artificial intelligence for 

electrified vehicles 

PROJECT ACRONYM  Upscale 

GRANT AGREEMENT NUMBER 824306 

INSTRUMENT RIA 

CALL LC-GV-2018 

STARTING DATE OF THE PROJECT November, 1ST 2018 

PROJECT DURATION 42 Months 



                      D2.3 Assessment of reduced order models for 
aerodynamic performance prediction 

 

 3 

 

The UpScale Consortium 
 

PARTICIPANT 
Nº 

PARTICIPANT ORGANISATION NAME COUNTRY 

1 (Coordinator)  
IDIADA AUTOMOTIVE TECHNOLOGY SA 
(IDIADA), 

Spain 

2 VOLVO PERSONVAGNAR AB (Volvo Cars) Sweden 

3 VOLKSWAGEN AG (VW) Germany 

4 CENTRO RICERCHE FIAT SCPA (CRF) Italy 

5 ESI GROUP (ESI GROUP) France 

6 ENGYS LTD (ENGYS LTD) United Kingdom  

7 
Kompetenzzentrum - Das Virtuelle Fahrzeug, 
Forschungsgesellschaft mbH (VIF) 

Austria 

8 VRIJE UNIVERSITEIT BRUSSEL (VUB) Belgium 

9 
ECOLE NATIONALE SUPERIEURE 
D'ARTS ET METIERS (ENSAM PARISTECH) 

France 

10 
ALGORITHMICA TECHNOLOGIES 
GMBH (ALGORITHMICA) 

Germany 

11 F INICIATIVAS I MAS D MAS I SL (F-INICIATIVAS) Spain 

 
 

Document Details 
 

DELIVERABLE TYPE Report 

DELIVERABLE Nº 2.3 

DELIVERABLE TITLE Reduced order models for aerodynamic 
performance prediction 

NAME OF LEAD PARTNERS FOR THIS 
DELIVERABLE 

IDIADA 

VERSION 1 

CONTRACTUAL DELIVERY DATE M30 

ACTUAL DELIVERY DATE  

DISSEMINATION LEVEL Public 
 

 
Revision History 

The following table describes the main changes done in the document since it was created 
 

REVISION DATE DESCRIPTION AUTHOR 
(ORGANIZATION) 

V.0 08/03/2021 Contribution to the 
document 

Markus Mrosek, 
Carsten Othmer 
(VW) 

V.0 08/03/2021 Contribution to the 
document 

Luca Miretti (CRF) 

V.0 09/03/2021 First complete draft 
of the document 

Nikolaos Kyriazis 
(ENG) 



                      D2.3 Assessment of reduced order models for 
aerodynamic performance prediction 

 

 4 

V.1 25/03/2021 Task leader revision Enric Aramburu 
(IDIA) 

V.2 26/03/2021 WP leader revision Luca Miretti (CRF) 

 30/04/2021 Project coordinator Albert R.de Liébana 
(IDIADA) 

    

 

Disclaimer  

 

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, 
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS 
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF 
ANY PROPOSAL, SPECIFICATION OR SAMPLE. Any liability, including liability for 
infringement of any proprietary rights, relating to use of information in this document is 
disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property 
rights are granted herein. The members of the project Upscale do not accept any liability for 
actions or omissions of Upscale members or third parties and disclaims any obligation to enforce 
the use of this document. This document is subject to change without notice. 
 

  



                      D2.3 Assessment of reduced order models for 
aerodynamic performance prediction 

 

 5 

 

Table of contents 
 Executive Summary ............................................................................................................... 6 

 Methods comparison .............................................................................................................. 7 

2.1. Training dataset ............................................................................................................... 7 

2.2. Drag coefficient prediction ............................................................................................... 8 

2.3. Flow fields prediction ....................................................................................................... 9 

 ROM selection ...................................................................................................................... 14 

3.1. Method selection for further investigations .................................................................... 14 

3.2. Additional potentialities .................................................................................................. 14 

 Higher fidelity application ..................................................................................................... 19 

4.1. Introduction and objectives ............................................................................................ 19 

4.2. Geometry dataset generation ........................................................................................ 20 

4.3. CFD dataset generation ................................................................................................. 24 

4.4. Drag coefficient prediction ............................................................................................. 25 

4.5. Flow fields prediction ..................................................................................................... 26 

4.6. Final assessment on implemented workflow ................................................................. 30 

 Conclusions and future works .............................................................................................. 31 

ACKNOWLEDGEMENT ........................................................................................................... 32 

 References ........................................................................................................................... 33 

 
 

 

 

 

 

  



                      D2.3 Assessment of reduced order models for 
aerodynamic performance prediction 

 

 6 

 Executive Summary 
 
This report is a part of work package 2, focusing on AI based design for Aerodynamics, and 
describes the work performed in Task 2.3. The results will be used for the choice of the most 
promising reduced order model to be used for relevant use cases, such as the aerodynamic 
optimization of actual vehicles in WP4. 
 
The main goal of Task 2.3 is to identify the most suitable reduced order model approach, 
among the ones developed in Task 2.2, to be applied for the aerodynamic optimization in a 
relevant industrial environment.  
 
First of all the accuracy, performance and potentiality of the ROMs developed in Task 2.2, 
where POD-I and ML approaches were tested on a simplified 2D vehicle, is compared and the 
most promising one is chosen for subsequent tests and developments. The identified workflow 
is then applied to “higher fidelity” datasets, to ensure that the selection of reduced order 
modelling technique is valid for relevant use cases. The approach here used for the validation 
is the application of the methodology on a complete 3D electrified vehicle. In order to ensure 
homogeneity of results with previous steps of the activity the 3D DrivAer model is used. 
Following the prescribed workflow, a dataset of about 1000 different geometries is generated 
starting modifying the baseline shape, flow fields and aerodynamic coefficients are evaluated 
by means of CFD simulations and the neural networks are trained with these input data. 
Finally, capabilities and accuracy of the trained nets are evaluated both in terms of drag 
coefficient and flow fields prediction. 
 
This deliverable doesn’t deviate from the plan in regard to its content or delivery date. 
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 Methods comparison 
2.1. Training dataset 
 
In order to perform a fair assessment of accuracy and performance between the different 
reduced order models developed in the previous tasks, both “deterministic” and “non-
deterministic” models are tested on the same dataset, and obtained results are compared. 
 
The dataset chosen for this validation are the “ClosedAGS” and “OpenAGS” versions of the 2D 
electrified DrivAer [1], consisting each of one thousand different shapes and CFD solutions 
generated on the bi-dimensional simplified shape. Full details on the datasets can be found in 
D2.2: Reduced order models for aerodynamic performance prediction. A quick reminder on the 
adopted database is provided in this paragraph. 
 
First of all a DOE of shapes was generated starting from the original model by means of surface 
morphing, thirteen different geometrical parameters were used. An example of the different 
shapes available in the dataset is shown in Figure 1. 
 
 
 

 
Figure 1: Parameters distribution and example of different shapes available in the 2D DrivAer “ClosedAGS” dataset 

For each generated shape a CFD simulation was performed, and results were extracted in terms 
of drag coefficients and flow fields, in this case resampled on a uniform grid of 256x256x1 nodes. 
These outputs were used to train the POD-I and the NN reduced order models, subjects of the 
assessment presented in this chapter. 
 

 
Figure 2: CFD workflow and example of results on some shapes available in the DOE 
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2.2. Drag coefficient prediction 
 
The comparison between a deterministic interpolation-based method and the non-deterministic 
Neural-Network-based approach (NN) for predicting the drag coefficient is demonstrated in this 
section. The “pure” open and closed AGS data sets (and not the mixed ones) have been utilized, 
as they were found from previous investigations in D2.2 to provide the most accurate models. 
The different databases as well as the methodologies have been described in sections 2.1, 3.1 
and 3.2 of the D2.2 report, respectively. 
 
In the case of the interpolation model, we make use of the TPS (Thin-Plate-Spline) approach 
that proved successful for the very similar task of interpolating the POD base coefficients in 
D2.2. Training and prediction were performed on a standard CPU of a standard desktop 
computer. 
 
For the NN, the Adagrad optimizer and 5 convolution blocks were used. More details regarding 
the NN training configurations can be found in Table 3 of D2.2. The training was run in Cirrus 
HPC, on one NVIDIA Tesla V-100-SXM2-16GB (Volta) GPU accelerator out of four which exist 
in each GPU node, while the prediction was performed on a Quadro P2000 5GB GPU 
accelerator in a desktop computer. 
 
The drag coefficient mean error has been evaluated for the test data set, which is a subset of 
each one of the two previously mentioned databases. It has to be noted here that the samples 
of the test data set have not been used during the training of the model. For a consistent 
comparison between TPS-interpolation and NN, the random splitting of the samples into test 
and train data sets is kept the same for the two methodologies, both for the open and the closed 
database. 
 
The mean error for the drag prediction in the test data set, its standard deviation, and the training 
and prediction wall clock times are shown in . The mean error expression of Eq. 1 of D2.2 is 
followed here, but the sum now is divided by the number of samples: 
 

                   (Eq.  1) 

 
As can be seen in , the deterministic TPS-based approach outperforms the NN in terms of cd-
prediction error by a factor of three to four. The TPS training times are smaller than their NN 
counterparts by a factor of about 5000. Also the prediction via TPS is significantly faster than 
with an NN, but for both methods the absolute prediction time values are small enough to provide 
the desired real-time capability.  
 
The error for the open data set is higher than the one for the closed data set. For the NN, one 
possible explanation is that the open or closed status of the grille shutters cannot be properly 
captured with the given sampling resolution as their size is comparable to the sampling step. 
 
For the OpenAGS database, Figure 3 shows the histograms of the drag coefficient. The inferiority of the NN w.r.t. the 

TPS approach is also reflected in the error distribution. The maximum NN error noticed in the open database was 
found to be 18.35%. Still, more than two thirds of the test cases in the open database have errors below or equal to 
the database mean error, and in general, the qualitative trend in the drag coefficient was captured correctly by the 

NN, as can be deduced from the correlation plot in Figure 4 
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Figure 4. As a result, despite performing worse than the deterministic method, the NN-based 
classification algorithm demonstrated the capability to learn the geometric dependence of the 
drag coefficient and to predict it with a still acceptable mean error of 2-3%. 
 
Table 1: Comparison between TPS and Neural Network for drag coefficient cd prediction. The prediction errors (Eq. 1) 
are given as mean +/- standard deviation over the test set, and the training and prediction (single test sample) wall 

clock times are reported. 

Database Method Error cd [%] Training time [s] 
Prediction time 

[s] 

OpenAGS 

Neural Network 3.10 +/- 2.78 462.6 0.0317 

TPS 0.95 +/- 1.06 0.10 0.0004 

ClosedAGS 

Neural Network 2.38 +/- 2.04 504.6 0.0231 

TPS 0.63 +/- 0.60 0.10 0.0004 

 
 

 
 

Figure 3: Distributions (kernel density estimation) of the drag coefficient prediction errors for the 201 test samples of 

the OpenAGS dataset. 

 
 

Figure 4: Correlation between the predicted drag coefficient values by either Neural Network or Thin Plate Spline with 
the true values from CFD (OpenAGS dataset). For perfect predictions, the points would lie on the black diagonal line. 

 

2.3. Flow fields prediction 
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In this section, the accuracy and the efficiency of the deterministic POD+I (Proper Orthogonal 
Decomposition + Interpolation) and the non-deterministic NN-based method for predicting the 
flow fields will be assessed. The previously mentioned data sets and their subsets have been 
used for the flow prediction as well. The methodologies have been described in sections 3.1 and 
3.2 of D2.2 in detail, while the NN training configurations can be found in Table 4 of the same 
report. 
 
Regarding the NN approach, the Adam optimizer and 7 convolution layers have been used. For 
POD+I we employed TPS again, and the number of used POD modes were not changed: 88 for 
U and 157 for p. Model training and prediction were performed on the same hardware as for the 
drag prediction (see previous section). The mean errors of the flow fields in the test data set are 
evaluated with the same metrics as in D2.2: 
 

                 (Eq. 2) 
 

        (Eq. 3) 
 
 presents a comparison between NN and POD+I for the prediction errors of velocity and pressure 
as well as training and prediction times, and Figure 5 compares the error distributions for both 
methods applied to the OpenAGS database. As opposed to the case of drag coefficient 
prediction (previous section), the NN can now compete with POD+I in terms of accuracy. It even 
outperforms POD+I for the velocity prediction while being only slightly worse for pressure. Also, 
the contrast in training time (factor 5000 for cd) has decreased considerably to a mere factor of 
about 20. 
 
As before, predictions for the OpenAGS database seem to be the harder task, with errors lying 
slightly above the ones for the closed database for either method and both fields, and, again, 
the poor representation of the open grille shutters may be the reason for this. But even for this 
database, the errors are well below 1%, meaning that both POD+I and NN serve as 
quantitatively reliable prediction tools for the volumetric flow fields.  
 
Table 2: Comparison of the prediction errors for velocity and pressure as well as training and prediction times 
between Neural Network and POD+I. As separate models were created for pressure and velocity, the shown training 
and prediction times are the sum of the respective times for the two models.  

Database Method 
Error velocity 

[%] 
Error pressure 

[%] 
Training time [s] 

Prediction time 
[s] 

OpenAGS 

Neural Network 0.71 +/- 0.17 0.69 +/- 0.20 2999 0.016 

POD+I 0.75 +/- 0.16 0.49 +/- 0.11 135 0.11 

ClosedAGS 

Neural Network 0.60 +/- 0.11 0.47 +/- 0.10 2997 0.016 

POD+I 0.67 +/- 0.11 0.41 +/- 0.08 179 0.10 
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Figure 5: Comparison of the velocity (left) and pressure (right) prediction error distributions (kernel density 
estimations) for the 201 test samples of the OpenAGS dataset between Neural Network and POD+I. 

 

 
 

Figure 6: Combined errors (velocity error + pressure error) for the test samples of the OpenAGS dataset. Horizontal 
lines indicate the mean errors over all test samples. The left plot includes all individual test samples, whereas the 

right plot only shows the two test samples where POD+I performed best compared with the Neural Network (ID 679) 
and, analogously, where the Neural Network performed best compared with POD+I (ID 858). Those two samples were 

chosen for the qualitative comparison of the methods.  

 

 
For a more qualitative assessment of their respective predictive capabilities we have created 
vis-à-vis comparisons between NN and POD+I for the flow fields of selected test cases. In order 
to appreciate any possible difference between NN and POD+I, we decided to focus on the more 
difficult OpenAGS database, and we selected the two test samples with the largest difference in 
the combined U + p prediction error: one where the NN is most superior to POD+I, and one 
where POD+I maximally outperforms NN. Figure 6 shows the combined errors for all OpenAGS 
test samples (left) and the ones for the thus selected extreme samples (right). These are: 
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• Test sample ID 679 
o NN: 1.81 % error for U, 1.11 % for p → 2.92 % combined 
o POD+I: 0.94 % for U, 0.61 % for p  → 1.55% combined 
o See Figure 7 

• Test sample ID 858 
o NN: 1.08 % error for U, 0.63 % for p → 1.71 % combined 
o POD+I: 1.51 % for U, 0.87 % for p → 2.38 % combined 
o See Figure 8. 

 
As can be seen from Figure 7 and Figure 8, for POD+I and NN alike, the errors in both velocity 
and pressure concentrate along the surface of the car, which is a direct consequence of the 
employed spatial sampling method not being body-fitted. An additional critical area is the engine 
bay, where both methods fail in predicting the right pressure level and the details of the velocity 
distribution in this geometrically complex environment, especially for sample ID 679. A higher 
spatial sampling resolution might alleviate these inaccuracies. For the velocity prediction, the 
shear layer of the flow leaving the top edge of the trunk seems to be another demanding area. 
Its position in the vertical direction is strongly geometry-dependent and it comes naturally with 
large gradients in this direction, which makes accurate predictions in this area particularly 
difficult.  
 
Overall, even though we picked a test sample pair with the largest contrast in the prediction error 
between POD+I and NN, we can hardly discern individual weaknesses or strengths. In terms of 
the qualitative accuracy of the predicted fields, both methods perform satisfactorily and face 
similar challenges. 
 

CFD 

 

 

NN 

  

POD 

  

 

  

CFD 

 

 

NN 
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POD 

  

 

  
 

Figure 7: Comparison of fields from CFD with Neural Network and POD+I predictions for the test sample where POD+I 
performed best compared with the Neural Network (ID 679). Top: velocity, bottom: pressure, right: differences 
between predictions and CFD. 
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Figure 8: Same as Figure 7, but with the test sample where NN performed best compared with POD+I (ID 858).  
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 ROM selection 
3.1. Method selection for further investigations 
 
From the assessment of the two ROM approaches in sections ¡Error! No se encuentra el 
origen de la referencia. and ¡Error! No se encuentra el origen de la referencia., it can be 
inferred that the main advantage of the POD+I approach over the ML algorithms is reduced 
computational cost. Besides, POD+I seems to be three to four times more accurate than NN in 
the drag coefficient prediction. Regarding the error of the methods in the flow fields prediction, 
the NN approach produced lower error for the velocity but higher error for the pressure 
prediction. All in all, the difference in the pressure and velocity errors between the two methods 
is negligible.  
 
On the other hand, the ML approach could lead to various benefits in terms of universality of the 
approach, as it can be potentially applied to predict the drag coefficient and the volumetric flow 
fields in geometries that are outside the database design space, as new features/physical 
parameters can be introduced that were not used during the training.  An example of potential 
application is shown in section 3.2, where the already trained networks are used to predict drag 
coefficients and flow fields on “never-seen” modifications on the 2D DrivAer model. A preliminary 
assessment of the results obtainable with this approach is performed, showing that the 
accuracies, especially for the flow fields prediction, do not differ too much from the mean error 
values of the test data set that have been documented in the previous section; however, regions 
where the unseen modifications are geometrically located are the ones where the maximum 
errors are located. According to these initial results and despite of these deviations, this 
approach can be considered a point of interest for future investigations in the field.  
 
Based on the above, the ML approach has been selected as the most suitable method to 
proceed in the UPSCALE project and it will be employed in the high fidelity application of section 
¡Error! No se encuentra el origen de la referencia., as well as for predicting the drag 
coefficient and the flow fields of the vehicles in WP4. 
 

3.2. Additional potentialities 
 
One of the strengths of the ML-based approach, as mentioned, is the possibility to predict 
aerodynamic results on shapes characterized by new features/physical parameters not included 
in the training dataset, “detaching” the prediction capability from the original parametrization. 
This feature, compared to surrogate models based only on interpolation, can be considered a 
breaking point with respect to state-of-the-art techniques, opening several scenarios in industrial 
product development. 
 
A test case is performed on the DrivAer 2D model, using the already trained networks to predict 
aerodynamic coefficients and flow fields on additional configurations generated ad-hoc for this 
application. These new configurations consist of “never-seen” modifications applied on the 
baseline shape, always obtained by surface morphing. Involved modifications span from simple 
variations (e.g. linear combination of training parameters) to completely new surface features 
(e.g. modifications on underbody components not included in the original DOE). 
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The full list of new generated configurations, with a draft description of the modification, is 
presented in Table 3. 
 
Table 3: 2D DrivAer geometric shapes generated for the “never-seen” configurations test case  

ID Modified region Description 

1050 
Front bumper 

Baseline + front bumper translation -20mm 

1051 Baseline + front bumper translation -100mm 

1052 
Underbody 

Baseline + underbody spar -30mm 

1053 Baseline + underbody spar -80mm 

1054 

Roof 

Baseline + roof translation -70 mm 

1055 Baseline + roof translation -20 mm 

1056 Baseline + roof translation +20 mm 

1057 Baseline + roof translation +70 mm 

1058 

Engine belly pan 

Baseline + engine belly pan -100 mm 

1059 Baseline + engine belly pan -20 mm 

1060 Baseline + engine belly pan +20 mm 

1061 Baseline + engine belly pan +100 mm 

1062 

Cowl 

Baseline + cowl x-translation -100mm 

1063 Baseline + cowl x-translation -20mm 

1064 Baseline + cowl x-translation +20mm 

1065 Baseline + cowl x-translation +100mm 

1066 

Trunk 

Baseline + trunk rotation -10deg 

1067 Baseline + trunk rotation -2deg 

1068 Baseline + trunk rotation +2deg 

1069 Baseline + trunk rotation +10deg 

1070 

All 

Baseline +  
front bumper translation -80mm 
underbody spar -60mm 
roof translation -50 mm 
engine belly pan +70 mm 
cowl x-translation +70mm 
baseRotation -7deg 

1071 Baseline +  
front bumper translation -30mm 
underbody spar -20mm 
roof translation +20 mm 
engine belly pan -30 mm 
cowl x-translation -20mm 
baseRotation +3deg 

 
 
A visual example of some of the tested configurations is reported in Figure 9, Figure 10 and 
Figure 11. 
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Figure 9: “Never-seen” modifications shapes, modified roof region 

 

 
Figure 10: “Never-seen” modifications shapes, modified underbody region 

 

 
Figure 11: “Never-seen” modifications shapes, modified multiple regions 
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Among the presented shape variations, different difficulty levels exist for the network validation: 
roof modification can be considered a linear combination of two geometrical parameters used to 
train the database (windscreen angle and rear window angle, see Figure 12 or refer to D2.2); 
underbody spar modifications were totally not present in the original parameters dataset; combo 
shapes, obtained by merging all the never-seen parameters, can be considered the hardest test-
case for the network. 
 

 
Figure 12: Parameters used to generate the dataset on which NN is trained, roof modifications presented here is a 
linear combination of two existing parameters, highlighted by circles 

 
For all the twenty-one new generated shapes (unknown database), the original network is used 
to predict both drag coefficients and flow fields. As a matter of validation, full CFD workflow is 
applied on each shape, and these “high-fidelity” results obtained by simulation are compared 
with reduced order model prediction. 
 
The mean error of the drag coefficient for the unknown database was found to be 2.71% and its 
standard deviation 1.77%. It can be inferred that the trained model works reasonably well even 
for the unknown cases, as the mean error remains in the same range, i.e. from 2% to 3%, and 
the worst prediction gives an error of 7.16% (see Figure 13). Nevertheless, the small number of 
samples prevents any further comments on the relatively low error value noticed in the worst-
case scenario. 

 
Figure 13: Histogram of the Drag coefficient error for the unknown database. Due to the small size of the database, 

the number of the samples is denoted in the y axis instead of the percentage of the samples. 
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The pressure and velocity fields, based on the closed AGS model, are predicted next. In Table 
4 the corresponding mean errors and their standard deviations are shown, whereas in Figure 14 
the histograms of the above-mentioned errors are depicted. The errors remain in the same range 
as the ones calculated for the closed test data set, but again, the small size of the unknown 
dataset prohibits any further deductions. As expected, the mean errors are significantly higher if 
the open AGS model is used, i.e. 1.58% for the pressure and 1.02% for the velocity magnitude 
fields. This is reasonable as the unknown cases have the lower grille shutters closed and 
therefore the most appropriate model for predicting the flow fields is the one generated by using 
the closed AGS data set. 
 
Table 4: Error in the pressure and velocity magnitude prediction and the standard deviation of these errors for the 
unknown database. 

Train database p (error %) U (error %) std(perror) std(Uerror) 

closedAGS 0.695 0.891 0.370 0.372 

 
 

 
Figure 14: Histograms of the pressure (left) and the velocity magnitude (right) errors for the unknown cases. Due to 
the small size of the database, the number of the samples is denoted in the y axis instead of the percentage of the 

samples. 

 
In Figure 15 contours of the pressure and the velocity magnitude fields, as well as their errors 
for sample 1070 are shown. Sample 1070 has been selected for visualization since it has a 
combination of new features compared to the train closed AGS data set that was utilized for 
training the model. The mean spatial error of sample 1070 is 0.44% for the pressure and 0.81% 
for the velocity magnitude. Overall, the prediction is satisfactory, although there are some 
isolated high error regimes. The geometry modifications of this sample, such as the front bumper 
x translation, the cowl x translation, and the underbody spare tire z translation drastically affect 
the flow field in the front bumper area, in the bonnet leading edge regime, and the flow field 
behind the battery respectively and thus, the spatial error in these regimes is increased.  



                      D2.3 Assessment of reduced order models for 
aerodynamic performance prediction 

 

 19 

 
Figure 15: Pressure and velocity vector contour fields for case 1070 of the unknown database. On the left side, the 
predicted (AI, 1st line) and the target (CFD, 2nd line) pressure fields are demonstrated first and then the error is shown 
(error, 3rd line). Similarly, on the right side, the predicted (AI, 1st line) and the target (CFD, 2nd line) velocity magnitude 
fields are demonstrated first, and then the error is shown (error, 3rd line). 

 
 

 Higher fidelity application 
 

4.1. Introduction and objectives 
 
One of the goals in this stage of the project is to verify that the identified model order reduction 
method, that has been trained and verified on 2D models, is applicable to more relevant cases 
for industrial applications. The developed workflow to predict aerodynamic coefficients and flow 
fields based on machine learning approach is here applied to a “higher fidelity” model, and 
obtained results are compared with actual CFD results. 
 
The vehicle chosen for this application is the 3D version of the electrified DrivAer model, more 
details on the model and its preparation can be found in D2.1: Requirements for aerothermal 
simulations reduced order model. 
 
The object of the investigation is still a simplified model, compared to a full production vehicle, 
but it includes all the features of a realistic BEV car (heat exchangers, electric machines, battery 
pack, …); for this reason this test case can be considered valid for reduced order models 
validation in view of the final application in WP4. 
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Figure 16: Overview of the external shape and underhood-underbody region of the electrified DrivAer model 

 
 

4.2. Geometry dataset generation 
 
A parametrization including thirteen different variables on the external surface is prepared on 
the model, according to the requirements deriving from WP1 and WP2 developed framework. 
At this stage of the project it has been chosen to proceed with the original parametrization of the 
model, not including yet the work under development in task 1.3 on the universal geometry 
parametrization. The reason of this choice is to guarantee the homogeneity of the evaluation of 
the method between 2D and 3D application, just extending in the third dimension the existing 
parameters. 
 
An overview of the areas involved in the parametrization is shown in Figure 17. As visible, the 
modifications involve almost all the area in the symmetry line section that can significantly affect 
aerodynamics.  
 

 
Figure 17: Global overview of the geometric parametrization on electrified DrivAer 3D model 

 
Also, the possible range of modification of the parameters is chosen accordingly to what 
prescribed for the 2D model, for the above-mentioned reasons. Some random shapes are 
generated in advance to the full DoE in order to check that the morphing tool is able to produce 
good quality surfaces. The full list of parameters and ranges for this application is visible in Table 
5. 
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Table 5: List of parameters and ranges on electrified 3D DrivAer model 

ID Parameter Type MinValue MaxValue Affected Area 

1 PARAM-upperGrille-Z DFM EDGE-FIT 
-14 mm (each 

side) 
+10 mm (each 

side) 

 

2 PARAM-lowerGrille-Z DFM EDGE-FIT 
-15 mm (each 

side) 
+15 mm (each 

side) 

 

3 PARAM-bonnetLE-Z DFM EDGE-FIT -32 mm +48 mm 

 

4 PARAM-windscreen-angle DFM EDGE-FIT -25  mm +30 mm 

 

5 PARAM-ramp-angle DFM EDGE-FIT -50 mm +60 mm 

 

6 PARAM-batteryPack-Z DFM EDGE-FIT -10 mm +30 mm 

 

7 PARAM-rearWindowAngle DFM EDGE-FIT -25 mm +25 mm 
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8 PARAM-rearWindowLength DFM EDGE-FIT -45 mm +45 mm 

 

9 PARAM-trunkLidAngle DFM EDGE-FIT -30 mm +48 mm 

 

10 PARAM-diffuserAngle DFM EDGE-FIT -50 mm +50 mm 

 

11 PARAM-trunkLength DFM EDGE-FIT -50 mm +50 mm 

 

12 PARAM-rideHeight-Z DFM TRANSLATE -25 mm +50 mm 

 

13 PARAM-rideHeight-angle DFM ROTATE 
-8.0 mm 

(each side) 
8.0 mm 

(each side) 

 

 
 
An example of application of the implemented morphing parameters is provided in the following 
images (Figure 18, Figure 19 and Figure 20): three different shapes included in the generated 
DoE are shown and compared with the baseline shape.  
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Figure 18: Comparison between baseline and DoE shapes on 3D DrivAer, front view 

 
Figure 19: Comparison between baseline and DoE shapes on 3D DrivAer, side view 
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Figure 20: Comparison between baseline and DoE shapes on 3D DrivAer, isometric view 

 
The design of experiments is planned accordingly to the 2D dataset workflow: a SOBOL 
sequence of one thousand shapes is generated, plus fifty additional spare points. For each 
configuration, the steady CFD workflow is applied a described in section 4.3. 
 
 

4.3. CFD dataset generation 
 
The computational cost in the higher fidelity application has been significantly increased, not 
only for the 3-D ANN training but also for the volumetric database generation, and therefore, the 
latter necessitates an accelerated platform for the vehicle CFD simulations. The proposed 
workflow, as can be seen in Figure 21, includes the development and enhancement of pre-
processing utilities, the CFD solver, and data-extraction tools. 
In the pre-processing context of the workflow, the computational grid for each vehicle geometry 
was constructed by employing the HELYX mesh generator (helyxHexMesh) [2], which is an 
evolved version of snappyHexMesh with improved performance and mesh quality. Since all 
geometry variants to be used in the study were derived from a single baseline case and their 
flow fields are expected to be similar, the mapping of initial fields from previous results was 
adopted instead of potential flow for field initialization. The newly developed mapping technology 
(helyxMap) uses a K-nearest neighbour (KNN) search [3] and it is up to 10 times more efficient 
than traditional Octree mapping techniques (mapFields), as it has been indicated by benchmark 
tests in a 100M case. The way the mapping is performed in the new utility is either coordinate 
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or wall distanced based. In the coordinate-based map utility, areas of similar location are 
mapped from the source to the target, whereas in the wall-distance-based approach, areas of 
similar wall distances are mapped. The latter produces a smoother initial solution as it avoids 
mapping a solid region into a fluid one or vice versa. 
Regarding the CFD solver selected for creating the flow field DOEs, a pressure-based block 
solver [4], [5] with Algebraic Multi-Grid was employed. In the 3-D steady-state vehicle 
simulations that were performed as part of this work, the coupled solver was found to converge 
twice as fast as compared to the heavily optimized segregated counterpart. Due to faster 
convergence and incremental speed-up per case, the total simulation time was significantly 
reduced. Furthermore, a new convergence assessment criterion, based on statistical and 
integral considerations, was applied to terminate the simulation once objective conditions 
regarding the aerodynamic coefficients were satisfied, so avoiding redundant iterations at the 
end of the calculation. 
As a final step, the CFD solution on the cell centres and the vehicle geometry was sampled in 
the vicinity of the vehicle, significantly reducing the volume of data that has to be stored for 
subsequent use with the AI training algorithms. The sampling can be either structured by 
employing the KNN algorithm (helyxSample) or unstructured by making use of OpenVDB 
technology [6]. In both cases, the computational cost compared to traditional sampling 
techniques used in OpenFOAM is significantly reduced.  
The efficiency of the workflow is further assessed in the accelerated solver deliverable (D1.2). 
 

 
Figure 21: Workflow of the 3-D DOE: the utilities and the CFD solver. 

 
Due to memory limitations in the GPU accelerators and the fact that the currently developed ML 
algorithms cannot run in parallel in multiple GPU accelerators or even in multiple GPU nodes, a 
relatively low-resolution input has been used for the training of the ANN. If a higher resolution 
database was used, it would allow simultaneous training of only a few multiple samples and as 
a result of the reduced batch size, the accuracy of the gradient computation during 
backpropagation would be dramatically affected. Apart from that, the model size and the stored 
parameters alongside the gradients would have outstandingly risen. Developments to increase 
the batch size by accumulating the gradients of several mini-batches, and secondly, by 
parallelizing the ML algorithm for multiple GPUs are in progress, but they are out of the scope 
of the current report. Furthermore, efforts to parallelize the model are also being made. 
 
Based on the above, two databases with different resolutions have been utilized. In the lower 
resolution database (drivAer_3D_low), uniform sampling (64x64x64 points) in a box containing 
the vehicle is applied, whereas in the higher resolution database (drivAer_3D_high), uniform 
sampling (128x64x256 points) in a box containing half of the vehicle is performed, taking 
advantage of plane symmetry at y=0. After memory profiling during the training process for the 
higher resolution database, it was found that most of the GPU memory was occupied and the 
batch size was reduced to make the training feasible. 
 

4.4. Drag coefficient prediction 
 
The results of the training for predicting the drag coefficient in the drivAer 3-D database are 
presented in this section. The training settings are the same as in section ¡Error! No se 
encuentra el origen de la referencia.. In Table 6 the mean error and its standard deviation, as 
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well as the training wall clock time for the low and high-resolution 3-D drivAer databases are 
shown. It can be concluded that by doubling the sampling points in each dimension, the 
computational cost is increased by a factor of 9.5 and the accuracy in the drag prediction is 
improved by approximately 35%. In addition, the standard deviation of the error remains smaller 
than the mean error value in both cases. As it can be elucidated from Figure 22, where the 
histograms of the drag coefficient error are shown for the 2 databases, the maximum error is 
also significantly reduced from 13.2% to 4.9%. Overall, the results are satisfactory as the drag 
coefficient predictions are 98.4% and 98.8% accurate for the low and the high-resolution 
databases respectively. 
 
Table 6: Effect of the database resolution on the drag prediction using 5 convolution layers and the adaGrad 
optimizer. The error, the standard deviation of the error, as well as the training wall clock time are shown. 

Database CD (error %) std(CD,error) 
Wall clock time 

(min) 

drivAer_3D_low 1.57 1.45 77.12 

drivAer_3D_high 1.15 0.94 731.22 

 

 
Figure 22: Histograms of the Drag coefficient error for the low (left) and the high (right) resolution data sets. 

 

4.5. Flow fields prediction  
 
The architecture of the ANN and the training configuration as described in the Flow prediction 
algorithm part of section 3.2.1 in deliverable D2.2, is followed in general here as well. The 
different NN parameters used for training the 3-D models are shown in Table 7. Due to the 
increased model and input, outputs sizes, the batch size for the finer resolution training is 
reduced, otherwise, the memory requirements for the training would exceed the available GPU 
memory and the training would be terminated. 
Regarding the last up-sampling layer, for the transposed convolution operator, Kt=2, St=2, Pt=0, 
Dt=1 instead of Kt=4, St=2, Pt=1, Dt=1 were used in order to reduce the checkerboard artifacts. 
These artifacts are caused due to uneven overlapping during the up-sampling process. The 
phenomenon of the checkerboard artifacts is enhanced in 3 dimensions as the uneven overlaps 
of each dimension are multiplied together [7]. It can be elucidated from Figure 24, where the 
error contour fields for the two different settings are shown, that the artifacts are significantly 
diminished when using the new transpose convolution configuration. The reduced artifacts result 
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in increased accuracy of the predicted flow fields and smaller mean absolute error loss as can 
be seen in Table 8 and Figure 23 respectively. Furthermore, from Figure 23 it can be inferred 
that the error loss in the validation set is converging to the error loss of the training set when the 
new transpose convolution configuration is applied, which is not the case when the old settings 
are kept. 
Next, the new configuration for the transpose convolution is also applied for training the finer 
resolution database. In Table 8, the errors and their standard deviation for the flow fields, as well 
as the training wall clock times are compared for the two databases. It can be deduced that by 
doubling the sampling points in each dimension, the pressure field error is reduced by 11%, the 
velocity vector field error decreases by 26%, while the computational time is increased by 9 
times. The mean absolute error loss of Figure 25 for the high-resolution database follows the 
same trend as the low-resolution database in Figure 23, since in both cases the validation loss 
converges to the training loss. Some additional findings for the high-resolution training follow: 
the histograms for the errors of the pressure and the velocity vector fields are shown in Figure 
26, whereas in Figure 27 and Figure 28, the flow fields contours on two different slices for sample 
730 are presented. Sample 730 was selected for visualization as it was found to be the case 
with the worst predictions for both pressure and velocity magnitude fields, and the corresponding 
errors were found to be 0.154% and 0.658%. In accordance to the 2-D findings, discrepancy 
between the target (CFD) and the predicted (AI) fields was noticed along the surface of the car. 
In addition, areas of high error were identified around the side mirror and in the engine bay for 
both the pressure and the velocity fields, while high velocity errors were also noticed in the shear 
layer leaving the trunk. 
 
Table 7: NN parameters used for the flow prediction training for the 2 different databases. 

NN parameters drivAer_3D_low drivAer_3D_high 

batch_size 16 10 

levels 5 6 

learningRate 0.00002 0.00002 

 
 
 Table 8: Effect of the different transpose convolution settings on the accuracy of the flow prediction variables. The 
errors in the pressure and velocity magnitude prediction are shown. The low-resolution database has been 
employed. 

transConv3d p (error %) U (error %) 

(4, 2, 1) 0.450 1.170 

(2, 2, 0) 0.142 0.570 
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Figure 23: L1 loss for the two permutations in the last up-sampling layer (low-resolution database). On the left figure 
Kt=4, St=2, Pt=1, Dt=1 setting were used, whereas on the right figure Kt=2, St=2, Pt=0, Dt=1 were used during transpose 

convolution. 

 
Figure 24: Contour fields of the pressure (left) and velocity (right) errors at z=3.27 plane for case 101 using the low-
resolution database. Training with transpose convolution settings: Kt=4, St=2, Pt=1, Dt=1 were used in the first row, 

whereas in the second row the transpose convolution setting used are: Kt=2, St=2, Pt=0, Dt=1. 

 
Table 9: Effect of the different data sets on the accuracy of the flow prediction variables. Error in the pressure and 
velocity magnitude prediction, the standard deviation of these errors, as well as the training wall clock time are 

shown in the corresponding columns. 

Database p (error %) U (error %) std(perror) std(Uerror) Wall clock time (min) 

drivAer_3D_low 0.142 0.570 0.007 0.041 887 

drivAer_3D_high 0.126 0.417 0.007 0.048 8199 

 
 

 
Figure 25: L1 loss for the new transpose convolution configuration (high-resolution database).  
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Figure 26: Histograms of the pressure (left) and the velocity magnitude (right) errors for the high-resolution 3-D 

database. 

 
Figure 27: Pressure and velocity vector contour fields on plane y=0 for case 730 of the high-resolution database. On 
the left side, the predicted (AI, 1st line) and the target (CFD, 2nd line) pressure fields are demonstrated first and then the 
error is shown (error, 3rd line). Similarly, on the right side, the predicted (AI, 1st line) and the target (CFD, 2nd line) 
velocity magnitude fields are demonstrated first, and then the error is shown (error, 3rd line). 
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Figure 28: Pressure and velocity vector contour fields on plane x=0.99 for case 730 of the high-resolution database. On 
the left side, the predicted (AI, 1st line) and the target (CFD, 2nd line) pressure fields are demonstrated first and then the 
error is shown (error, 3rd line). Similarly, on the right side, the predicted (AI, 1st line) and the target (CFD, 2nd line) 
velocity magnitude fields are demonstrated first, and then the error is shown (error, 3rd line). 

 

4.6. Final assessment on implemented workflow 
 
In conclusion, the benchmark tests on the 2-D geometries demonstrated the capability of both 
methods to accurately predict the drag coefficient and the volumetric flow fields. Between the 
two methods, which denoted similar accuracy in the flow field predictions, NN approach was 
chosen as the most appropriate for performing the 3-D predictions, despite its computational 
cost. The ML algorithms have demonstrated the capability to accurately predict the drag 
coefficient and the volumetric flow fields for samples out of the design space, which justifies their 
selection over the POD+I method. In an effort to prove the applicability of the NN approach to 
real vehicle predictions of WP4, high fidelity simulations for the drivAer 3-D geometry have been 
also performed as a preliminary step. The latter required an optimized DOE platform for CFD 
simulations to significantly reduce the computational time for generating the database. The 3-D 
models which followed, demonstrated consistent results with the 2-D cases studied and 
evidence that the current methodology can be delivered to WP4.  
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 Conclusions and future works  
 
The 2.3 task bridges the gap between simplified tests undertaken by means of 2D modelling 
and the application on real vehicle designs undertaken in WP4. 2D models were used to check 
the feasibility of ML tools to predict the aerodynamic forces and flow-fields at proof of concept 
level and then the research moved to 3D models in order to check the limitations of a ML 
framework regarding computational costs and accuracy. Jumping to 3D applications required 
efficient processes regarding both, the generation of data by means of CFD simulation and the 
ML training process. The accelerated CFD solver has been proved successful and has allowed 
the simulation of hundreds of complete vehicle simulations in reasonable times. The challenge 
of the ML algorithm of managing one order of magnitude higher memory usage of 3D models 
compared with 2D models has also been successfully demonstrated. Finally, the goal of 
achieving error levels below 2% has been achieved not only for the aerodynamic forces but for 
the velocity and pressure field predictions as well. After confirming the feasibility of using a ML-
based aerodynamic ROM with 3D models, this framework will be applied to 3 real designs 
provided by the consortium OEMs in WP4, including a sedan, a city car and a SUV. 
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