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 Executive Summary 
This report is a part of work package 2, focusing on Reduced Order Models for aerodynamic 
prediction, and describes the work performed in Task 2.2, including subtasks 2.2.1 and 2.2.2. 
The results will be used as a basis for future work in work package 2 and 4. 
 
The main goal of Task 2.2 is to build reduced order models that can be used to reduce 
optimization time as well as for real-time decision making. Two kinds of reduced order models 
are investigated in this report, a deterministic model is assessed in subtask 2.2.1 and a non-
deterministic model in subtask 2.2.2. For the purpose of comparing the two types of models a 
2 dimensional parameterized geometry based on the electrical drivAer model (1), presented in 
Deliverable 2.1, was created. The parametrized geometry was used to create approximately 
1000 different geometries. The flow around each geometry was simulated using an automated 
workflow and the drag values, flow fields and pressure fields saved. A dataset consisting of 
approximately 1000 samples was generated in this way and used as an input to the reduced 
order models. Finally, the accuracy of the predicted drag values and the velocity and pressure 
fields is evaluated.  
 
This deliverable doesn’t deviate from the plan in regard to its content or delivery date. 
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 Problem statement 
2.1. Test case description 
For the investigation and the comparison of prediction capabilities by deterministic and non-
deterministic models described in this report, a simplified aerodynamic test case was 
identified. The publicly available DrivAer CAD model was converted into an electrical “e-
DrivAer” version by replacing the internal combustion engine with an e-Motor and modifying 
the underbody in order to install a simplified battery pack, according to the procedure 
described in deliverable D2.1. The notchback version was used for this study. 
 
In this stage of the activity the main goal was to define a functional workflow. Considering that 
a significant number of tests and CFD simulations were planned, it was decided to work on a 
2D version of the model in order to speed-up workflow turn-around times. The baseline shape 
was generated by extracting the centerline section of the full model, as presented in Figure 1. 
 

 
Figure 1: 2D centerline section of the e-DrivAer Notchback model 

 

In order to generate a database of different shapes the morphing approach was used: a 
geometrical parametrization of the CAE model was built in BETA CAE ANSA pre-processor. 
This tool allows to re-design the shape of the vehicle by applying local modifications on 
surfaces and mesh. A qualitative overview of the involved parameters is available in Figure 2. 

 
Figure 2: Qualitative description of model parameterization. 

Allowed variation range for each modification was defined as a compromise between 
maximum achievable shape change and quality of the resulting mesh. Morphing was applied 
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on the surface mesh. The parametrization globally consisted of thirteen different continuous 
shape parameters. Combined together they allowed to generate shapes significantly different, 
in terms of aerodynamic performance, one from another. An example of explored parametric 
shape is given in Figure 3, where some random combinations of variables are compared with 
the original configuration. 
 

 
Figure 3: Example of randomly generated shapes obtained by surface morphing . 

 
A full list of involved parameters, including maximum range of variation and a brief description 
is available in Table 1. Surface morphing was also forced to use quantized levels, indicated in 
the column “step”, in order to ensure that appreciable differences exist between different 
levels. All reported values have to be considered as variations with respect to the original 
position. 
 
 
Table 1: List of morphing parameters included in the parameterization. 

ID Parameter Type Min 

Value 

Max 

Value 

Step Description 

1 D_upperGrilleZ DFM EDGE FIT -28 mm 20 mm 4 mm z-extension of the front upper air intake 

2 E_lowerGrilleZ DFM EDGE FIT -30 mm 30 mm 4 mm z-extension of the front lower air intake 

3 F_bonnetLEz DFM EDGE FIT -32 mm 48 mm 8 mm z-translation of bonnet leading edge, in 

order to modify the hood angle 

4 G_windscreenAngle DFM EDGE FIT -25 mm 30 mm 5 mm z-translation of the windscreen trailing 

edge, in order to modify the glass angle 

5 H_rampAngle DFM EDGE FIT -50 mm 50 mm 10 mm z-translation of front bumper leading 

edge, in order to modify ramp angle 

6 I_batteryPackZ DFM EDGE FIT -10 mm 30 mm 4 mm z-translation of the underbody battery 

pack 

7 L_rearWindowAngle DFM EDGE FIT -25 mm 25 mm 5 mm z-translation of the windscreen leading 

edge, in order to modify the glass angle 

8 M_rearWindowLength DFM EDGE FIT -45 mm 45 mm 6 mm extension of rear window length  
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9 O_trunkLidAngle DFM EDGE FIT -30 mm 48 mm 6 mm z-translation of trunk trailing edge to 

modify the lid angle 

10 P_diffuserAngle DFM EDGE FIT -50 mm 50 mm 10 mm z-translation of rear bumper lower edge, 

in order to modify diffuser angle 

11 Q_trunkLength DFM EDGE FIT -55 mm 55 mm 11 mm x-extension of vehicle trunk 

12 R_rideHeightZ DFM TRANSLATE -25 mm 50 mm 5 mm Rigid z-translation of the vehicle in order 

to modify ground clearance 

13 S_rideHeightAngle DFM ROTATE -1 ° 1 ° 0.2 ° y-rotation of the vehicle in order to change 

pitch angle 

 
All morphing parameters were defined as “Direct Fitting Movement” type (2), a system able to 
move parts of the model, both geometry or mesh, as not deformable body, while the 
surrounding elements can absorb the deformation without damaging the continuity of the 
model. As an example, definition and application of parameter 9, trunk lid angle, is provided in 
Figure 4, showing original and min/max positions as described in Table 1. 
    

 
Figure 4: Morphing of trunk lid angle with the O_trunkLidAngle parameter. 

 
The parametric model was then used to generate different versions of the DrivAer model to be 
evaluated by CFD simulations, according to the workflow defined in Figure 5, from which drag 
coefficient, pressure and velocity fields would be extracted to feed the reduced order models, 
according to the procedure described in the next chapter. The CFD simulation setup is 
described in Section 2.2. 
 

 
Figure 5: Overview of CFD workflow. 
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2.2. Generation of training data: Workflow 

2.2.1. DOE 

In the original database (DrivAer 2D), which consists of approximately 1000 samples, apart 
from the several control points which are float numbers, there are also Boolean features (e.g. 
upper and lower grille shutters) for describing the geometry of each sample.  

A SOBOL sequence (3) was used to generate the dataset of geometries, for a total of one 
thousand different shapes. A SOBOL sequence is a quasi-random sequence and its aim is to 
fill the sampling space in a uniform way, without recognizable patterns. An example of 
generated points distribution is provided in Figure 6. For the sake of simplicity, only the first 
three parameters are shown. Fifty additional geometries were generated as spare data, in 
case of unfeasible designs in the original dataset. 

 
Figure 6: Distribution of points generated as a SOBOL sequence for paratemers D_upperGrilleZ, E_lowerGrilleZ, 

F_bonnetLEz. 

In the interest of estimating the influence of such Boolean features in the accuracy of the NN, 
two different datasets were generated, consisting of the same combination of parameters, 
differentiating each other just with an open or closed lower air intake. The two datasets are 
referred respectively as “OpenAGS” and “ClosedAGS”. A visual example is provided in Figure 
7. 
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Figure 7: Example of shapes included in the datasets, both from “ClosedAGS” and “OpenAGS” configuration. 

 
Additional datasets, mixing shapes from the two original datasets, were then created to be 
tested with the neural network workflow, as described in Section 3.2.2. 
 
An example of aerodynamic results obtained within the database is presented in Table 2, 
where drag coefficients and velocity magnitude distribution are shown for the baseline, the 
worst and the best shape from the “ClosedAGS” dataset. As can be seen, the variability within 
the considered set of data is of the order of 120 drag counts, indicating that the prescribed 
parametrization was able to produce shapes significantly different from an aerodynamic point 
of view. Velocity magnitude visualization confirms this statement also in terms of flow fields. 
 
 
Table 2: Overview of aerodynamic variability within the “ClosedAGS” dataset. 

ID sample 765 (Worst) Baseline sample 586 (Best) 

CD 0.279 0.214 0.159 
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2.2.2. Automated workflow 
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In this section, the workflow prior to the training procedure and the framework for automating it 
is described. This framework is robust and capable of handling different types of datasets, and 
either 2D or 3D geometries. Due to the variety of the database types, it is important to have a 
consistent framework for both 2D and 3D cases which will require minimal user input, such as 
the sampling resolution. The workflow in brief includes 1) geometry generation (see Section 
2.1), 2) meshing, 3) setup CFD configuration, 4) running the CFD solver, 5) resampling and 
additional post-processing of the results, 6) transformation of the data obtained by CFD to a 
format compatible with the ML library, 7) training of the Neural Network (NN), 8) testing of the 
generated model and 9) prediction of the output variables, comparison with the targets, which 
were derived by CFD and statistical analysis. 

Given the variety of the case dimensions and the different machine types the user can have at 
his disposal, the present workflow prior to training can be summarized into two different levels 
of abstraction. The first one refers to the case dimensions (2D or 3D), whereas the second one 
corresponds to the type of the machine and can be either a local workstation or a cluster with a 
job scheduler. Different pre- and post-processing utilities run for 2D and 3D cases respectively, 
such as grid generation, which is solved in the framework with the creation of a parent class 
that contains the basic interface and two inherited classes with different implementations 
depending on the case dimensions. In case the user is using a local workstation, the workflow 
is rather straightforward for several applications to run in parallel. However, when using HPC 
facilities, a task manager has to be incorporated into the workflow to limit the number of the 
submitted jobs to a certain amount and not submit a new one, unless a previous job is 
finalized. For that purpose, the two different classes regarding the machine type have been 
implemented and they have as an argument the case dimensions class in their constructor 
(see Figure 8). (4) 

 

 

Figure 8: Logic diagram of the main classes called. The blue arrows indicate inheritance, whereas the green arrows 
show the path of the workflow. The most important classes are shown in red and conventional-type arguments are in 
black. In case3D class, createGeometry variable is an additional argument as the geometry for the 3D rectangular boxes 
is generated using pyDOE (4), rather than following the methodology described in Section 2.1. 

An OpenFOAM case directory is created for each geometry provided in the dataset, based on 
the predefined dictionaries and then, an unstructured computational grid is automatically 
generated, which is refined around the solid surfaces. The case setup follows, where apart 
from setting the boundary conditions and the required options for each solver, the 
computational domain is decomposed to the corresponding number of subdomains for running 
the CFD solver in parallel. A segregated pressure correction (SIMPLE) solver in the finite 
volume framework was utilized (simpleFoam). In order to model turbulence, RANS simulations 
have been performed by employing the k-omega SST turbulence model, which behaves 
reasonably well, considering the purpose of the activity, for external aerodynamics. Once the 
solution is converged to the required residual, post-processing of the results takes place. 

Due to current memory limitations in modern HPC facilities, the NN training was performed for 
cases of lower resolution compared to the original solution acquired by CFD analysis and 
therefore, a solution resampling algorithm had to be developed and incorporated into HELYX 
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CFD package (5) provided by ENGYS. For instance, most of the ML training were performed 
in Cirrus HPC system housed at EPCC, where each GPU compute node contains four NVIDIA 
Tesla V100-PCIE-16GB (Volta) GPU accelerators. Even by making use of such state of the art 
GPU accelerators, preliminary investigations show that the memory requirements for training 
3D datasets exceed the available GPU accelerator memory (16 GB) even for spatial sampling 
resolution of 1283 and a batch size of 12 cases. Having in mind that the smaller the batch size, 
the more inaccurate the gradient estimation will be, a compromise between accuracy and 
memory resources must be done. Further investigations on shared memory applications will 
be performed in the next steps of the work package, in order to verify if the limitation could be 
overcome by multiplying the hardware. The purpose of the resampling algorithm is to 
approximate the flow fields needed as input (solid mask) and output channels (pressure and 
velocity vectors) for the NN, based on the flow fields solution at the cell centers of the finer 
unstructured CFD grid. In essence, the above-mentioned channels are in a structured, equally 
spaced grid-like format, but not necessarily equally spaced among different dimensions. 
Although a similar utility already exists in OpenFOAM (mapFields), the current feature is much 
more computationally efficient, by using the K-nearest Neighbours algorithm (6), (7) instead of 
the Octree methodology. 

Apart from resampling, post-processing the CFD results also includes file-folder manipulation 
and obtaining the aerodynamic coefficients for each case, as well as exception handling of 
diverging solutions to disregard such cases from the training database. The remaining dataset 
is randomly split into two sets, the train and the test datasets. The size of the former is 
approximately 80% of the whole dataset and the remaining 20% is the size of the latter. 
Finally, the data are transformed and compressed into a numpy (8) format of multiple 
dimensional arrays (.npz files) named npOutput. The first dimension of the array consists of 
the inputs (ninputs) and the outputs (noutputs) used for the training of the NN (see Section 3.2), 
while the following ones denote the sampling resolution in the x, y and z dimensions (for 3-D 
cases): npOutput[ntotal][nx][ny][nz]; ntotal=ninputs+noutputs. 

There is also the post-processing stage after the prediction of the flow field and the drag 
coefficient, where statistical analysis of the errors is conducted and the predicted flow field is 
visualized. For the latter, a post-processing utility in HELYX CFD has been developed in order 
to transform the predicted results which are in numpy format to OpenFOAM format. 
 

2.3. Error Metrics 

In order to compare the solution obtained by the CFD analysis with the predicted flow fields, 
either derived by the deterministic method or by the ML approach, the following error metrics 
are being defined and have been used throughout this report for consistency. It has to be 
clarified here that the CFD solutions used for comparison are the sampled fields, ensuring that 
way one-to-one comparison between corresponding points. If the CFD solution at the cell-
center had been selected, an additional error would have been introduced due to the 
approximation of the cell-centered solution to the sampling points. The errors for the pressure 
and the velocity magnitude are calculated by finding the spatially averaged error of the 
sampled grid points for each case and then, the mean value among all cases in the test 
dataset is calculated. The final error expressions are as follows: 

                                                        (Eq.  1) 
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  ,                                                    (Eq.  2) 

where in the above equations, ui,s, pi,s are the velocity vector and the pressure at point i of 
case s. N stands for the number of samples in the test database and P is the number of the 
total grid points for each case: 

, 

where nx, ny, nz are the sampling points in the x, y and z directions respectively. The AI and 
CFD superscript denote the output of the NN and the target respectively. Regarding the error 
estimation for the Lift and Drag prediction, it is defined as the case accumulated relative error 
for each aerodynamic force; for instance, the error on aerodynamic drag is estimated as 
follows: 

                                                                        (Eq.  3) 

Based on the above error expressions, the standard deviation of the spatial error, the 
minimum, and the maximum spatial errors have been recorded to have an estimation of how 
much the spatial error can vary from case to case. 

 

 Methods 
3.1. Deterministic Method: POD + Interpolation 
 
The deterministic method investigated in this report follows the well-known “POD+I” paradigm 
(see Figure 9): 

 
1. Decomposing the entirety of training snapshots into its main variational modes 

(“base modes”) via Proper Orthogonal Decomposition (POD (9)), 
2. Truncating the thus obtained POD basis at a suitable number of modes determined 

usually by their relative information content (RIC), and 
3. Using an interpolation method for the base mode coefficients to construct the flow 

field for any unseen geometry. 
 

This procedure was shown to deliver robust field predictions with controllable accuracy for 
aerospace applications (9; 10), and first attempts were made to introduce it in automotive 
contexts (11; 12; 13). Those studies were restricted to rather low-dimensional parameter 
spaces with dimensionalities well below 10 and comparatively small sample numbers. Since 
the interpolation part of POD+I suffers from the “curse of dimensionality” (14), it is an open 
question, if this method delivers results of satisfactory accuracy also for the 14-dimensional 
test case under investigation here. POD+I is therefore the natural choice as a deterministic 
method to be applied in UPSCALE: both in order to verify its performance in higher-
dimensional parameter spaces and as a reference for the non-deterministic approaches 
pursued within this project. 
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Figure 9: The workflow of the POD+I method: Shown are the pressure POD modes. Their linear combination with 
suitably interpolated POD base mode coefficients (a_j ) ̂ serves as the pressure prediction for an unseen geometry 

represented by the parameter set 𝒙∗ (reproduced from (12)). 

 
 
 

3.2. Non-deterministic Method 

In this section, the machine learning methodology used for predicting the flow characteristics is 
described. A NN can, in general, represent a non-linear function of the form of a function. The 
main concept is to model the original function with a network of connected nodes which form 
layers. For instance, for a layer l of the network, the output of the k-th node αk,l is: 

,                                                                          (Eq.  4) 

where g is the activation function and nl is the number of the nodes in the l layer. The unknown 
is the weight vector w which approximates the original function. 

The fields of the velocity vector, the pressure, and the turbulent quantities, accompanied by 
the main aerodynamic coefficients can sufficiently describe the vehicle aerodynamics and can, 
therefore, lead towards preliminary EV design. For proof of concept purposes, the vehicle drag 
coefficient, the pressure and the velocity fields around the vehicle have been chosen as 
targets/outputs of the NN, without restricting the applicability of the present methodology to 
these specific variables. Turbulence quantities or other aerodynamic coefficients, such as 
moment coefficients can potentially be selected as additional targets aiming to a more 
complete description of the flow field and vehicle aerodynamics. In the current work, the drag 
coefficient has been chosen as a separate output (a single number for each case in the 
database), rather than estimating it from the predicted pressure and velocity fields which would 
have accumulated the error of both. Furthermore, in that approach the viscous stress tensor 
would have been roughly approximated by the velocity vector at the coarse sampling grid, 
significantly increasing the error in the prediction that way. In order to predict the pressure and 
the velocity vector fields, a regression type NN has been employed, whereas for the drag 
prediction, a separate NN of classification type architecture has been implemented. Although 
the drag prediction algorithm doesn’t output the pressure and the velocity fields, and hence, 
they are not needed as targets, a single database as described above (see Section 2.2) is 
used for both NN architectures. The main reason behind that is consistency, avoiding 
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generation and storage of additional data that already exist. Therefore, these outputs are not 
used as targets for the training process in the classification algorithm. 

The velocity vector and the pressure fields are non-dimensionalized by the freestream velocity: 

,                                                                                (Eq.  5) 

 ,                                                                              (Eq.  6) 

removing that way the quadratic influence of velocity from the target data (15). Besides, the 
pressure is offset by the mean pressure for each pressure sample, as the pressure offsets in 
the targets are not correlated with the inputs (15). Finally, the targets are normalized to [-1, 1] 
to minimize errors due to numerical precision during the training stage (15). It has to be 
clarified here that once the outputs are predicted, they are transformed back to their original 
form and therefore, the error is measured for the actual pressure and velocity fields. 

The parallelization capabilities of machine learning libraries are limited by CPU and GPU 
parallel processing, prohibiting training of higher resolution 3D samples due to CPU 
computational inefficiency and GPU memory limitations respectively. Based on recent 
performance studies conducted at ENGYS, the clock time when using thread parallelism is 
increased by approximately 20 times, for training NN’s relevant to this study. However, it is 
feasible to train samples of higher resolution, due to the significantly larger memory available 
at CPU nodes. To give an estimation of the CPU and GPU memory specifications, the RAM 
capacity in each CPU node at Cirrus HPC is 256 GB, compared to a GPU node which has four 
Tesla GPU, with 16 GB memory each. PyTorch (16) machine learning framework was selected 
for consistency reasons, as both PyTorch and HELYX CFD are being built with CMake. 

 

3.2.1. Network details 

Drag prediction algorithm 

Based on previous work conducted at ENGYS, classification methods have been proved to 
predict the drag coefficient with higher accuracy compared to the regression family of 
methods, even though the drag coefficient is a continuous variable and a regression type NN 
would seem more appropriate. The input of the NN is the geometry mask on the sampling grid 
as described above, whereas the output is the probability for the drag of the predicted case to 
belong in each class. 

Firstly the maximum drag coefficient CD, max among all samples in the database is found. The 
possible range of the drag coefficient is, where CD,min=0, and α is an amplification factor, 
currently set to 1.2, to account for the event of a predicted case to have drag coefficient higher 
that CD,max. The next step is to classify the different cases from the dataset to N equally spaced 
classes based on their drag coefficient. N=600 was selected as a default value for the number 
of classes. Therefore, a case with drag coefficient CD has label i: 

 ,                                                  (Eq.  7) 
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which means it belongs to the i+1 class. 

The NN created here consists of multiple convolution blocks, similar to image classification 
networks. The NN algorithm has been implemented in a generic way offering the option to the 
user to select the number of the layers (convolution levels). However, it has to be noted that 
the number of levels cannot exceed the minimum sampling resolution of the physical 
dimensions: 

Layersmax=log2min(nx, ny, nz),                                                               (Eq.  8) 

where nx, ny, nz are the initial sampling resolutions in the x, y, and z directions respectively. 
The logarithm of 2 was calculated since, after each convolution block which will be later 
explained, the spatial resolution in each dimension is reduced to half. Depending on the 
physical dimensions of the problem, 2D or 3D convolution blocks are created. From an 
implementation point of view, the 2D NN is the base class and the 3D NN is the derived class 
that inherits the necessary common features from the parent class. After performing 
parametric studies, the number of the layers of the constructed NN is usually set as the 
number of the maximum layers reduced by 1 or 2, in order to avoid overfitting of the model. 

Each convolution block consists of a 2D or 3D convolution operator, depending on the 
samples’ physical dimensions, a rectified linear unit (ReLU) and a down-sampling process 
(max pooling) which acts as a generalizer while at the same time it reduces the number of the 
unknown parameters. 

The number of the output channels after each convolution block (each convolution block has 
one convolution layer) can be determined by the following empirical equation: 

 .                                   (Eq.  9) 

This equation was derived to automatically create M layers. The number of the sampling grid 
points in the x-direction (Wout) after each convolution or pooling operation is given by: 

 ,                                                      (Eq.  10) 

where K stands for the convolving kernel size, D is defined as dilation and it is the spacing 
between kernel elements, P is padding and S is the stride of convolution. Since each 
convolution block consists of a convolution and a max-pooling unit, the above equation is 
applied twice within the convolution block. For the 2-D or 3-D convolution Kc=5, Sc=1, Pc=2, 
Dc=1 were chosen to keep the number of the sampling points the same, whereas for the 2-D 
or 3-D max-pooling Kp=2, Sp=2, Pp=0, Dp=1 were chosen aiming to reduce each dimension’s 
sampling points by half. Overall, after each convolution block, the number of sampling points is 
reduced by a factor of 2 (see Figure 10).  
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Figure 10: Diagram of a generic convolution NN for classification problems. Only 1 convolution block is shown 
consisting of a convolution layer and a max-pooling operator. The spatial resolution is reduced to half after each 

pooling operator. For demonstration purposes, only 7 channels were created after the first convolution layer instead 
of 16 

The same equation can be applied for each direction (W, H, L) by replacing the output (out 
subscript) and the input (in subscript) channels accordingly. If the Kernel, Dilation, Padding or 
Stride size is not the same in each direction, these parameters are also modified accordingly. 
In the drag prediction training that has been performed so far, the same parameters were used 
for each spatial dimension. Initially, for the first convolution block calculations, the spatial 
resolution is given by [Win, Hin, Lin]=[ nx, ny, nz] and based on that, the output size is calculated 
from Eq. 9. The next convolution block has as an input the output of the previous one and the 
output size is calculated likewise. After the last convolution block, the linear unit follows, which 
applies a linear transformation of the form y=xAT+b. The output tensor of the last convolution 
block is flattened to a single Mx1 tensor, where M=channelsoutxWinxHinxLin. A second linear 
transformation follows, which has as output the number of the classes N. In order to change 
the output of the network to the probability distribution over classes instead, a softmax 
activation function is placed at the output layer: 

 .                                                                                 (Eq.  11) 

In classification problems, in the forward pass the softmax function is usually used alongside 
the negative log likelihood loss (NLLoss), which is the negative natural logarithm of the 
probability distribution of the prediction. Next, the weights are adjusted in the backward pass 
by computing the gradient of the loss function with respect to the learning parameters. Several 
different methods (optimizers) are used for updating the trainable parameters, such as the 
stochastic gradient descent (SGD) (17) and AdaGrad (18). 

The purpose of the above described NN algorithm is to predict the drag coefficient of a given 
geometry (input) by providing a probability distribution for the drag to belong in each class. 
Once this is accomplished, for each class i, the drag coefficient which is within the class’ range 
is approximated by: 

 .                                                 (Eq.  12) 
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In practice, the above 2 linear units can be combined resulting in the same outcome, they have 
been split for implementation purposes. For instance, by using a sampling resolution of 
256x256, the 256x256x1 initial tensor after 5 convolution blocks becomes of size 8x8x512. 
After the first linear unit, it becomes a vector-like tensor of dimensions 32768x1, whereas the 
final output features of the second linear unit are 600 (number of classes). The parameter 
values for setting up the NN are shown in Table 3. 

  

Table 3: Tuning of the parameters needed in the classification problem. The beta1 and beta2 parameters are needed 
by Adam optimizer, the finalLearningRate is needed by adaBound, weight_decay is used in adaGrad, whereas 
momentum is used for achieving faster convergence in the stochastic gradient descent algorithm. 

Classification NN parameters 

[nx, ny, nz] [256, 256, 1] 

amplifyRate 1.2 

nclass 600 

batch_size 16 

epochs 400 

levels 5 

optimizer adaGrad 

learningRate 0.01 

weightDecay 0 

finalLearningRate 0.1 

beta1 0.5 

beta2 0.999 

momentum 0.5 

 

Flow prediction algorithm 

A regression type architecture has been employed for predicting the flow fields. More 
specifically, a U-Net architecture, which has an encoder-decoder architecture has been 
implemented (19). The algorithm is generalized for 2D and 3D physical problems and the 
number of the down-sampling levels, which is the same as the number of the up-sampling 
levels, is being defined by the user, similar to the classification algorithm, having as only 
restriction the initial spatial resolution from Eq. 8. 

The U-Net algorithm starts with a single convolution layer, the down-sampling convolution 
blocks come next. The latter consists of an activation function, a leaky version of a ReLU 
(rectified linear unit), followed by a convolution operator which is also followed by batch 
normalization. For the down-sampling convolution blocks, Kc=4, Sc=2, Pc=1, Dc=1 were chosen 
to reduce each dimension's sampling points by a factor of 2. Due to the increasing number of 
channels created, large scale abstract information is extracted. After reaching the maximum 
depth layers, the opposite process takes place by increasing the sampling points in each 
dimension and by reducing the number of the feature channels. The decoding starts with an 
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equal number of up-sampling convolution blocks as the down-sampling ones. The former 
consists of a ReLU activation function, an up-sampling operator, a convolution and a batch 
normalization operation. For these blocks, Kd=3, Sd=1, Pd=1, Dd=1 were selected to keep the 
size of the tensor constant. However, after each block, a concatenation operation is performed 
doubling the number of sampling points in each physical direction. Then, one transposed 
convolution block is introduced which consists of a ReLU in conjunction with a transposed 
convolution layer. For the transposed convolution, Kt=4, St=2, Pt=1, Dt=1 were selected 
increasing the size of the tensor by a factor of 2 (see Figure 11 for a generated NN of 7 depth 
levels). The number of the output channels after each down-sampling convolution block can be 
determined by the following empirical equation, which is slightly modified compared to the one 
used for the drag prediction to apply a cut off upper limit: 

                                (Eq.  13) 

The spatial resolution in the output of each convolution block can be calculated by applying 
Eq.  9 twice, as both convolution and pooling operations exist, whereas for the transposed 
convolution block the grid points in each dimension are calculated by: 

                                 (Eq.  14) 

A simple L1 loss function is used here in the forward pass to measure the divergence from the 
target: 

                         (Eq.  15) 

Here, N is the batch size, as outputs are considered to be the pressure and velocity fields 
predicted by the NN after denormalization, and target are the fields computed by CFD. Finally, 
the trainable parameters are updated in the backward pass. The main methods for training, 
testing and prediction processes are organized into 3 classes, having as a base class the 
training. The test class is derived from the training, and similarly, the prediction class is derived 
by the testing class. The parameter values for setting up the NN are shown in Table 4. 

  

Figure 11: Diagram of the U-Net with 7 layers of convolution for spatial sampling resolution of 128x128, resulting in 
7.567M trainable parameters. 
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Table 4: Tuning of the parameters needed in the regression problem. The beta1 and beta2 parameters are needed by 
Adam optimizer, whereas the finalLearningRate is needed by adaBound and weight_decay by adaGrad. 

Regression NN parameters 

[nx, ny, nz] [256, 256, 1] 

batch_size 12 

iterations 50000 

levels 7 

optimizer Adam 

learningRate 0.0006 

weightDecay 0 

finalLearningRate 0.1 

beta1 0.5 

beta2 0.999 

momentum 0.5 

 

3.2.2. Training 

It is a good practice in deep learning to select the training and the testing subsets of each 
database by randomly splitting the database so that 80% of the total number of the samples 
are used for training and the remaining 20% are used for testing. This provides a sufficient 
number of cases for training and a representative sample database for testing. In this report, 
as the testing set, the training set will be used as a means of preliminary validation of the 
model. 

Apart from the OpenAGS and the ClosedAGS, a mixed dataset (mixed-small) was created by 
combining the above two databases (see Section 2.2). In order to make the numerical 
experiment independent of the database size, the mixed dataset was created by randomly 
selecting half of the OpenAGS cases and half of the ClosedAGS grilled shutter cases. An 
additional mixed (mixed-all) database was created by simply combining the OpenAGS and 
ClosedAGS databases, resulting in a database of double size compared to the previously 
mixed dataset. This will be useful to evaluate how the sensitivity of the results depends on the 
database size. 

 

 Results  
4.1. Deterministic Method: POD + Interpolation  
 
The results in this section were obtained with the Reduced-Order-Modeling (ROM) toolbox 
NAVPACK from NAVASTO®. We restrict ourselves to applying NAVPACK to the OpenAGS 
and ClosedAGS data sets, since mixed datasets would require two separate ROMs for each 
value of the Boolean parameter and make a comparison with the non-deterministic methods 
more difficult. 
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For the sake of a valid comparison between both methods (to be reported in D2.3), we made 
sure that the input data is exactly the same for both approaches: the POD+I method takes the 
same snapshots as the NN, resampled in the same way to the same Cartesian mesh. The 
geometry representation is, however, not the binary mask of the NN, but the ANSA morphing 
parameters introduced above.   
 
The POD base modes are calculated separately for velocity 𝑈 and pressure 𝑝 by performing a 
Thin Singular Value Decomposition (TSVD (20)) of the snapshot matrix. They constitute a low-
dimensional linear subspace of the entirety of CFD training solutions within the design space. 
The squared singular values of the TSVD equal the eigenvalues 𝜆𝑗 of the training snapshot 

correlation matrix (21) and are each associated to a POD base mode. They can be seen as a 
measure of its information content. The relative information content (RIC) of the first 𝑘 
eigenmodes can therefore be computed as 
 

𝐼(𝑘) =
∑ 𝜆𝑗

𝑘
𝑗=1

∑ 𝜆𝑗
𝑛
𝑗=1

 , 

 
with 𝑛 being the total number of training snapshots. 
 
Figure 12a and b show, respectively, the eigenvalues 𝜆𝑗 in descending order and the 

corresponding RIC 𝐼(𝑘) for 𝑈 and 𝑝 of the OpenAGS data set. The eigenvalue spectrum 
exhibits the typical strong drop within the first few modes, allowing to reach a RIC of more than 
90% already with less than 100 modes. In particular, to reach the commonly target RIC of at 
least 95%, the following number of modes are required for the respective data sets: 

• OpenAGS: 88 modes for velocity 𝑈, 157 modes for pressure 𝑝, 

• ClosedAGS: 81 modes for 𝑈, 148 modes for 𝑝. 
In order to have a minimum RIC of 95% for both data sets, we therefore truncated the POD 
base after 88 modes for 𝑈 and after 157 modes for 𝑝 for the further analysis. 
 

  

a) Eigenvalues b) Relative Information Content 
Figure 12: Eigenvalues (a) and relative information content RIC (b) for velocity and pressure of the OpenAGS dataset. 

 
After computing the POD base modes and truncating them suitably for the purpose of 
dimensionality reduction, the only missing step to complete the “POD+I” model reduction 
procedure is the interpolation of the POD base coefficients. Common choices for interpolation 
are Kriging (22) and Thin-Plate-Spline (23). According to our previous experience with these 
two methods for moderate parameter space dimensionalities, their achievable accuracy is of 
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similar order. As TPS does not require hyperparameter tuning and is significantly faster for the 
high number of geometric parameters of this test case, we opted for TPS in the current 
investigation. 
 
 
Table 5: Errors for pressure and velocity when reconstructing the training data using 157 and 88 POD modes, 
respectively. The errors are specified as mean+/-standard deviation over all the training snapshots. 

Dataset Error pressure [%]  Error velocity [%]  

OpenAGS 0.19 +/- 0.02 0.35 +/- 0.05 

ClosedAGS 0.16 +/- 0.02 0.33 +/- 0.05 

 

Table 5 summarizes the errors when reconstructing the training data via TPS based on the 
truncated POD basis as detailed above with 157 pressure and 88 velocity modes, respectively, 
for both the OpenAGS and the ClosedAGD data sets. While the pressure error is below 0.2% 
for both data sets, the velocity error is slightly higher, but still at a satisfactory level of less than 
0.4%. In addition, Figure 13 provides some error statistics in the form of histograms for 
pressure and velocity of all 800 training samples of the ClosedAGS set. The histograms 
approximately follow a Gaussian distribution with a standard deviation of 0.02 and 0.05%, 
respectively, which quantitatively underpins the validity of the chosen ROM approach. 
 

  
a) Pressure b) Velocity 

Figure 13: Histogram of the pressure (a) and velocity (b) errors for the 800 training samples of the ClosedAGS 
dataset. 157 and 88 POD modes were used for pressure and velocity, respectively. 

 
In order to qualitatively illustrate how accurately the training data is represented by the 
constructed ROM, we show a few representative contour plots of the actual fields in the 
following. We thereby restrict ourselves to the ClosedAGS data set, which has the smaller 
combined (pressure + velocity) error of 0.16% + 0.33%. Within this data set, sample #344 was 
found to have the lowest combined reconstruction error (0.38%), whereas sample #626 was 
the hardest to reconstruct with a combined error of 0.94%. The true flow field from the CFD 
training simulations, the ROM-predicted flow field and their difference are depicted in Figure 14 
and Figure 15. 
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a) Velocity (in m/s) b) Pressure (in Pa) 

Figure 14: Comparison of fields from CFD (top row) with ROM predictions (middle row) for the training sample with 

lowest combined error (#344). The difference between ROM prediction and CFD is shown in the third row. 

 

  

  

  

a) Velocity (in m/s) b) Pressure (in Pa) 
Figure 15: Same as Figure 14, but for the training sample with highest combined error (#626). 

Note that for the well-predicted sample #344, the prediction error is practically restricted to the 
surface of the car, whereas the bulk field – of both pressure and velocity – do not exhibit any 
significant difference. The poor reconstruction on the surface is probably due to an insufficient 
spatial resolution of the car boundary and does not have anything to do with the model order 
reduction of the fields themselves. In contrast, Figure 15 clearly exhibits deficiencies in the 
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prediction of sample #626 in the whole wake region: a chain of artificial pressure minima and 
maxima and unphysical structures in the velocity field. This is a direct consequence of the 
information loss introduced via basis truncation. However, even for this worst sample, the 
combined error of 0.94% is acceptably small and is hardly visible at all in the originally scaled 
images of pressure and velocity (top two rows of Figure 15). 
 
Finally, Table 6 presents some performance measures for the ROM-based field predictions. 
The computational effort for both training and field prediction scales with the number of modes 
and is therefore higher for pressure (157 modes) than for velocity (88 modes). Still, the roughly 
100s for training occur only once and are negligible in comparison to the total computational 
effort for the generation of the CFD training data. The time consumption of approximately 
100ms for a single field prediction is small enough to allow for the intended interactivity of 
predicting fields for modified geometries. 
 
 
Table 6: Summary of performance measures for field predictions. The wall clock time for training and prediction is 
reported as mean+/-standard deviation over 10 trials measured on a Linux workstation with 16 CPU-cores (2 × Intel® 
Xeon® CPU E5-2667 v4 @ 3.20 GHz) 

Predicted fields #Modes #Predicted values Training time [s] Prediction time [ms] 

Pressure 157   66560 104+/-10 106+/-4 

Velocity 88 199680 75+/-4 44+/-14 

 
 

4.2. Non-deterministic Method  

Drag prediction 

In this section, a numerical investigation on the effect of the different databases on the 
accuracy of the drag coefficient prediction is performed. The different databases are the 
OpenAGS, ClosedAGS, mixed-small and mixed-all sets that have been described in Section 
3.2.2. In the numerical experiments that follow for all databases, a sampling spatial resolution 
of 256x256x1 was chosen, Adagrad was the optimizer selected and 5 convolution blocks were 
used for the NN. Here, for validation purposes, the training set of each database is used as the 
testing set. 

For the sake of a valid comparison between both methods (to be reported in D2.3), we made 
sure that the input data is exactly the same for both approaches: the POD+I method takes the 
same snapshots as the NN, resampled in the same way to the same Cartesian mesh. The 
geometry representation is, however, not the binary mask of the NN, but the ANSA morphing 
parameters introduced above.   
 

The error in the drag prediction and its standard deviation are shown in Table 7. It can be 
concluded that the most accurate models regarding drag prediction are the OpenAGS and 
ClosedAGS datasets, where the error in the prediction, remembering that a discretization of 
600 classes was used, is 0%. Although this would support the initial argument of having a 
separate training process for the existence or not of Boolean features, the model is overfitting 
and further investigation is needed. The training using the mixed-all database results in much 
more accurate predictions (1 order of magnitude) compared to the mixed-small database. This 
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is reasonable in the sense that more samples are classified in each class, as the number of 
samples in this database is double the number of the rest databases. In Figure 16 the 
histogram of the drag coefficient error for the mixed-all database is shown. As can be seen, 
almost for 75% of the test dataset the accuracy in the drag coefficient prediction is around 
99.8% and the error distribution, has in general, a monotonically decreasing function pattern 
(monotonic in subdomains, not in the whole domain). Besides, the wall clock time is similar for 
the OpenAGS, ClosedAGS and mixed-small databases, but it is almost double for the mixed-
all database, as it consists of 2000 cases, whereas the rest databases consist of 1000. The 
simulations were performed in Cirrus HPC, by using one NVIDIA Tesla V-100-SXM2-16GB 
(Volta) GPU accelerator out of four which exist in each GPU node. 

  

Table 7: Effect of the absence or presence of the Boolean feature on the drag prediction using 5 convolution layers 
and the adaGrad optimizer. The error, the standard deviation of the error, as well as the wall clock time are shown. 

Database CD (error %) std(CD,error) 
Wall clock time 

(min) 

OpenAGS 0.00 0.000 7.71 

ClosedAGS 0.00 0.000 8.41 

mixed-small 2.940 0.156 8.18 

mixed-all 0.115 0.017 15.76 

 

Figure 16: Histogram of the Drag coefficient error for the mixed-all database. 

 

Flow prediction 

The effect of the presence or absence of Boolean features is investigated next by using 
different databases. The different databases are the OpenAGS, ClosedAGS, mixed-small and 
mixed-all sets that have been described in Section 3.2.2. In the numerical experiments that 
follow for all databases, a sampling spatial resolution of 256x256x1 was chosen, Adam was 
the optimizer selected and 7 convolution layers were used for the NN. Here, for validation 
purposes, the training set of each database is used as the testing set. 
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As can be seen from Table 8, due to small error values it is unclear whether the training based 
on the ClosedAGS and OpenAGS databases result in a more accurate prediction of the flow 
field. Using more samples in the mixed-all database doesn’t actually improve the accuracy 
which means that having a database of the order of 1000 samples is sufficient for AI 
predictions. However, the standard deviation of the error for the pressure and velocity 
magnitude predictions is significantly smaller in the databases with the Boolean feature on or 
off, as it is below 30% of the corresponding error value. This is not the case for the mixed 
databases, where the standard deviation can be around 50% of the error or even above. In 
Figure 17 the L1 norm for all databases is plotted. The training models generated by the 
OpenAGS and ClosedAGS databases demonstrate better convergence compared to the 
mixed-small and DrivAer databases. Furthermore, it takes the half number of epochs for the 
mixed-all database to converge to the same residual as the other databases. However, the 
wall clock time of each epoch is double, compared to the other databases, as the number of 
the samples is double. The total number of the epochs in the algorithm is defined as the 
number of the iterations divided by the number of the batches, resulting in around 500 epochs 
for the mixed-all database and around 1000 epochs for the other databases. Therefore, the 
wall clock time is from 48 to 50 minutes for all databases using the computational resources 
mentioned in the above section. In Figure 18 the histograms of the pressure and velocity 
magnitude errors for the mixed-all database are shown. It is elucidated that for 60% of the 
dataset the accuracy in the prediction is 99.9% for both pressure and velocity magnitude and 
the distribution error is a monotonic function. 

Table 8: Effect of Boolean features (different training databases) on the accuracy of the flow prediction variables. 
Error in the pressure and velocity magnitude prediction, as well as the standard deviation of these errors, are shown 

in the corresponding columns. 

Database p (error %) U (error %) std(perror) std(Uerror) Wall clock time (min) 

OpenAGS 0.552 0.555 0.102 0.134 49.98 

ClosedAGS 0.346 0.471 0.073 0.073 49.95 

mixed-small AGS 0.523 0.551 0.295 0.221 49.01 

mixed-all AGS 0.598 0.707 0.350 0.226 48.51 

 

Figure 17: L1 norms with respect to the number of epochs for the different datasets. 
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Figure 18: Histogram for the pressure (left) and the velocity magnitude (right) errors for the mixed-all database. 

 

Once the prediction model is generated, which is the most time-consuming process, the flow 
field prediction of the requested cases is generated on the fly. The wall clock time for 
predicting the flow field of such a case, comparing it with the CFD sampled solution and 
exporting it to file is negligible and it was measured to be 1.25 sec when using a Tesla GPU 
accelerator in Cirrus and 0.51 sec when using a conventional CPU (Intel(R) Core(TM) i7-
9700K CPU @ 3.60GHz). The wall clock time for the np2foam utility was measured to be 
approximately 3 seconds, for converting the predicted, target and error pressure and velocity 
vector fields to OF format, as it was measured in the above-mentioned CPU machine. It is 
obvious that the wall clock times measured in this section are negligible compared to the 
training time and can lead towards the development of a real time prediction tool for the 
aerodynamic coefficients and flow fields. 

In an effort to visualize the predicted flow field and validate the developed post-processing tool 
(np2foam), which has been developed in HELYX CFD, indicative contour plots are 
demonstrated for some of the predicted cases. 

The cases with the minimum and the maximum average error from the most accurate 
database were selected for visualization. The most accurate database was found to be the 
OpenAGS database by taking the average of the pressure and velocity errors. The average 
error is simply the sum of the pressure and the velocity error of each case, divided by 2. The 
case with the minimum average error value is number 562 with error 0.275% (Figure 19) and 
the one with the maximum average error is case 679 with error 0.892% (Figure 20). 
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Figure 19: Pressure and velocity vector contour fields for case 562 of the ClosedAGS database. On the left side, the 
predicted (AI, 1st line) and the target (CFD, 2nd line) pressure fields are demonstrated first and then the error is shown 
(error, 3rd line). Similarly, on the right side, the predicted (AI, 1st line) and the target (CFD, 2nd line) velocity magnitude 
fields are demonstrated first and then the error is shown (error, 3rd line). 

 

Figure 20: Pressure and velocity vector contour fields for case 679 of the closed AGS database. On the left side, the 
predicted (AI, 1st line) and the target (CFD, 2nd line) pressure fields are demonstrated first and then the error is shown 
(error, 3rd line). Similarly, on the right side, the predicted (AI, 1st line) and the target (CFD, 2nd line) velocity magnitude 

fields are demonstrated first and then the error is shown (error, 3rd line). 
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It can be concluded that the predicted and target flow fields look visually similar, if not the 
same and that the areas with the higher error values are at the solid-fluid interface, especially 
in the engine regime, where many geometrical details exist. 

 

 Conclusions and Future Work  

The above results give us confidence to try predicting the drag coefficient and the flow fields in 
cases that have not been used for training (test set). It is unclear however, if separate training 
for the existence or not of each Boolean feature results in improved accuracy in the drag 
coefficient and the flow fields prediction. A decision tree training, depending on the existence 
or not of each feature can be followed. However, for n Boolean features, 2n training processes 
have to be performed, increasing that way the computational cost, as well as the storage 
requirements for the different databases that have to be generated. It is unclear though if such 
a decision tree training affects the accuracy in the pressure and the velocity magnitude 
prediction. Therefore, cases that have not been used during the training will be used as test 
set is the next task in order to conclude if the OpenAGS and ClosedAGS databases provide 
more accurate predictions compared to the mixed ones. 

From the pressure and velocity magnitude contour fields it can be concluded that although the 
error is generally low, its maximum values are usually close to the solid boundary. This is more 
evident when the boundary has many geometrical details, which cannot be captured with the 
existing sampling resolution. Similarly, unphysical artefacts are noticed in the sampled flow 
field and hence, even if the AI predicted solution is physically correct, the error is increased as 
the latter is compared to the sampled solution. In an attempt to reduce the existing error and to 
investigate its source, higher resolution sampling which will potentially diminish the aliasing 
error and will be developed in future work. Once the current methodology has been validated 
for 2D cases, the next step is to apply it to 3D cases and to predict the flow field in realistic 
vehicle geometries. The size of such datasets will unavoidably increase, especially if a 
decision tree approach is followed, where a different database and training for each non-linear 
feature has to be stored. Therefore, switching to HDF5 file format is indicated, as they ensure 
high-performance I/O and significantly smaller database size. Furthermore, Metadata related 
to Boolean features or different flow conditions, e.g. Reynolds number can also be stored in 
HDF5 file format. 
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