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1. Executive Summary 
 
This report describes the work performed in Task 2.1, including subtasks 2.1.1, 2.1.2 and 
2.1.3. The results will be used as a basis for future work in work package 2 and 4. This report 
is a part of work package 2, focusing on AI based design for Aerodynamics.  
 
The main goal of Task 2.1 is to identify the required inputs in terms of variables (geometries, 
flow fields) and the amount of data that needs to be generated in order to train Reduced Order 
Models/Machine Learning Models for aerothermal purposes. Acceptable accuracy thresholds 
are also discussed. 
 
Part of the report focuses on assessment of data/processing requirements. This is done by 
evaluating which physical fields and geometrical information are required to evaluate the 
different designs and perform the learning process during the AI phase. This part also includes 
evaluation of the amount of data needed to be stored and a proposal on how to limit the 
amount of simulations required in order to guarantee the best trade-off in terms of accuracy 
versus cost. 
Target settings are also defined for the accuracy of the ROM/ML models based on work 
package 1 as well as on previous work.  
 
The report concludes with a description of the model used as a simplified vehicle in Work 
Package 2. A modified version of the DrivAer model has been created for this purpose. The 
original DrivAer model is a simplified vehicle model well known in the automotive industry. It is 
intended as a bridge between a bluff body (e.g. the Ahmed body) and a fully detailed vehicle. 
The original DrivAer model includes a simple internal combustion engine. No electrical version 
of the DrivAer model is publicly available. For the purpose of the work performed in Work 
Package 2, a parametrized electrical version of the original DrivAer model has been created. 
The model is presented in the last section of this report. 
 
This deliverable doesn’t deviate from the plan in regard to its content or delivery date. 
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2. Determination of data/processing and accuracy requirements 
for reduced order models 

In order to determine the data and processing requirements we focus first on the grid 
resolution. In order to estimate the size of the grid required for a vehicle, a machine-learning 
model is trained on a 2 dimensional aerofoil. The information obtained from the simulations is 
used as a basis to estimate the resolution required as well as the storage requirements when 
applying the same method to a full size vehicle. The next sub-section focuses on the 
processing requirements. The computational power required for each simulation and the time 
required to screen through all the 17 parameters on the simplified vehicle that will be used in 
work package 2 are estimated. Finally, a screening workflow is proposed in order to minimize 
the amount of simulations required by identifying the most important parameters.  
 

2.1. Input data specification in training a deep neural network 
This sub-section describes the application of a deep neural network to a two dimensional 
aerofoil case. The results obtained from the simulations are used as a basis when estimating 
the amount of data required for a complete vehicle simulation. 
 

2.1.1. General considerations 
To train a good machine-learning model, one of the first steps one has to take is to decide the 
grid resolution used for generating a training dataset. A few factors that need to be considered 
are: 
 

1. The grid resolution needs to be high enough to extract all the important features from a 
Computational Fluid Dynamics (CFD) simulation flow field 

2. The grid resolution needs to be high enough to provide all the necessary training 
features for the machine-learning model 
. 

 
From machine-learning perspective, the smaller the dataset, the easier the training process 
will be. However, if the resolution of a data sample is too small, it will inevitably miss some 
important features for the models to capture during training. On the other hand, if the 
resolution of the data samples is too big, one may not even be able to train a model at all. 
 
In this sub-section, we will try to present some rough analysis as for what kind of resolution 
one may need to train a model for predicting external aerodynamics behaviour around cars. 
 

2.1.2. An aerofoil case: CFD simulation 
We consider an aerofoil with shape code ERRER 557. It is a two-dimensional case, and the 
CFD simulation is run using simpleFoam, which is a segregated finite volume method solver in 
OpenFOAM that applies the simple pressure correction. We are using unstructured grids with 
refinement around the aerofoil surfaces. The total number of cells used in the simulation is 
41939. The mesh grid is shown in ¡Error! No se encuentra el origen de la referencia. and a 
closer-look of the mesh around the aerofoil surface is shown in ¡Error! No se encuentra el 
origen de la referencia.. 
 
The bounding box for the computational domain (in meters) is: 
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𝑥 ∈ [−5,5] and 𝑦 ∈ [−5,5], i.e. the flow domain is 10 meters by 10 meters in x and y directions. 
The simulation is run for 500 iterations with residuals for U, V and P at 0.00043, 0.00043 and 
0.0040 respectively. The aerofoil is about 1 meter in length. 
 
 

 
 

 

2.1.3. Sampling results 
The dimensions of sampling region in x and y directions are both from -0.8 m to 1.5 m, where 

𝑥 = 0 m corresponds to the leftmost part of the aerofoil surface.  
 

To compare the sampling accuracy, three set of sampling resolutions are used: 128x128, 
256x256 and 512x512 in x and y directions respectively. The results from the CFD simulations 
are presented in Figure 1. The results obtained by sampling the pressure to a grid size of 
128x128 are presented in Figure 2. The results for a grid size of 256x256 and 512x512 are 
shown in Figure 3 and Figure 4. 

  
Figure 1. Pressure field obtained from the CFD 
simulation 

 
Figure 2. The pressure obtained by sampling with a grid 
size of 128x128 

 

Figure 1. Computational mesh Figure 2. Computational mesh focusing on the area around 
the airfoil 
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Figure 3. The pressure obtained by sampling with a grid 
size of 256x256 

 
Figure 4. The pressure field obtained by sampling with a  
grid size of 512x512 

 
The velocity field obtained from the CFD simulation is presented in Figure 5 and the sampled 
velocity field for a grid size of 128x128 is shown in Figure 6. The sampled velocity field for the 
remaining grid sizes, 256x256 and 512x512, are presented in Figure 7 and Figure 8, 
respectively. 
 

 
Figure 5. The velocity field obtained from the CFD 
simulation 

 
Figure 6. The velocity obtained by sampling with a grid 
size of 128x128 
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Figure 7. The velocity obtained by sampling with a grid 
size of 256x256 

 
Figure 8. The velocity obtained by sampling with a grid 
size of 512x512 

 

2.1.4. Analysis of the sampling results 
We can draw some conclusions by comparing the sampling results with the output from the 
CFD simulation: 
 

 The 128x128 resolution is not good enough to smoothly represent the aerofoil surface. 
It does not capture well the peak velocity, 𝑈𝑚𝑎𝑥, the peak pressure, 𝑃𝑚𝑎𝑥, or the 

minimum pressure, 𝑃𝑚𝑖𝑛 in the flow. The sampled 𝑈𝑚𝑎𝑥 is only 86% of the CFD post-
processing, and the 𝑃𝑚𝑖𝑛 value reqion is far bigger than in the simulation. 

 

 The 256x256 resolution presents a much better result. It resolves the aerofoil surface 

well, the 𝑈𝑚𝑎𝑥 is 96% of the CFD post-processing, and the 𝑃𝑚𝑖𝑛 pressure region well-
match the CFD post-processing. 

 

 By applying the 512x512 grid size the we expect to slightly improved sampling 
comparing to 256x256. In practice, it might not be suitable for training the network, 
as it will greatly increase the training time and memory footprint. 

 
From the above analysis, we can conclude that for the two-dimensional aerofoil case, a 
sampling grid resolution of 256x256 would be needed to have an adequate representation of 
the CFD simulations. 
 

2.1.5. Machine-learning prediction 
A convolutional neural network (ConvNet) based deep-learning model has been developed at 
Engys Ltd. The model architecture is similar to that published in [1].  
 
The training dataset is generated using the UIUC database1 as geometry. A steady-state, 
incompressible flow solver is used. The upstream, down stream top and bottom boundaries 
are all set into freestream, with U component chosen randomly, using a uniform distribution 
(0,100) m/s, while the V and W components are all set into zero. 

                                            
1 https://m-selig.ae.illinois.edu/ads/coord_database.html 
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A two-dimensional model is used. As the training of the ConvNet model requires structured 
grid data, while the CFD simulation is carried out with unstructured meshes, a k-nearest-
neighbour-based sampling method is developed at Engys, and is used to generate the training 
dataset. The method is fast and generally applicable to any external flow field. 
 
The ConvNet is a U-shaped network with 6 forward layers and 6 backwards layers. The over-
all accuracy with our dataset is 99.57% for velocity and 89% for pressure, both are much 
higher than the published accuracy in [1], which is 97.4% for velocity and 85.24% for pressure. 
The higher prediction error in the pressure field is due to the reason that in most of the flow 
field, pressure is near zero, so small prediction error will amount to significant relative error. 
We have tried some different ways, such as to increase the number of hidden nodes, increase 
the number of training epochs, use different loss criteria etc, none of these seem to further 
increase the accuracy. The sampling grid resolution of 128x128 is used to obtain the training 
and testing/validation dataset. The total training samples are 1339, and the test samples are 
around 149. To ensure that the model predictability is true, the testing/validation cases are not 
in the training loop.  
 
Figure 9 and Figure 10 show the model-predicted pressure field and the ‘target’ (ground-truth) 
pressure field. As one can see, the predicted results are very close to the target ones.  
 

 
Figure 9. Pressure field predicted by Machine-learning 
model 

 
Figure 10. Sampled (target) pressure field 

 

Figure 11 and Figure 12 compare the predicted and ground-truth results for velocity around the 
airfoil. Again, the two fields are very close to each other. 
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Figure 11. Velocity field predicted by the maachine-
learning model 

 
Figure 12. Sampled velocity field 

Figure 13 shows the normalized difference between the predicted and ground-truth 
pressure fields. The difference is normalized by U0*U0, where U0 is the free stream 
velocity. Figure 14 shows the normalized difference between the predicted and 
ground-truth velocity field. The normalization factor is U0. From these two figures, one 
can see that the largest difference in the pressure and velocity fields is located in a 
small region near the airfoil surface. In most of the computational field, the difference 
between prediction and target values are very small. 
 

 

 
Figure 13. Difference between maching-learning model 
prediction and the ground-truth pressure field. 

 
Figure 14. Difference between machine-learning model 
prediction and the ground-truth velocity field. 
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2.2. Output fields and storage requirements for automotive simulations 
This subsection is divided into two parts. The first focusing on general machine learning 
methods and the second part on hybrid physics informed machine learning 
 

2.2.1. Output and storage requirements for machine learning approach 
One of the aims with Upscale is to predict aerodynamic quantities from a universal 
parametrization. Therefore, data from different simulations on different geometries should be 
saved in a common format. It is proposed here to resample data to a uniform grid. Mapping will 
be done to a few differently sized grids in order to allow for collecting the data for both high 
resolution analysis as well as simulations with quick turnaround time. Based on the results 
from the two dimensional aerofoil, the proposal is to sample a three dimensional case to a grid 
sized 512x256x128, 256x128x64 and 128x64x32 cells. The car should be scaled so that the 
front wheel center x coordinate is 140, the rear wheel x coordinate is 300. The following 
quantities should be saved on the uniform grid: 

 Flow velocity: 𝑢, 𝑣, 𝑤 (m/s) 

 Pressure: 𝑝 (Pa) 

 Turbulence eddy viscosity: 𝜈𝑡 (Pa · s) 

 Signed distance: 𝑑 (m) 

The grid of size 512x256x128 contains a total of 16·10242 cells. There are 6 field quantities. 
Given that the data is stored as 32 bit (4 byte) single precision floating point values, 384 MB of 
data needs to be stored from each simulation. This is a manageable size even if the data is 
kept in a database that grows to thousands number of simulations. 
The following scalar quantities should be saved: 

 Scale factor: 𝑓 (m), which is the length of a uniform grid cell in meters.  

 The location in physical space of the origin of the uniform grid, i.e. the corner at ground 

level in front of the car to the left. 𝑥0, 𝑦0, 𝑧0 (m) 

 Free stream velocity: 𝑣∞ (m/s) 

 Yaw angle: 𝜓 (°) 

 Mass flow through heat exchanger(s) (�̇�) 

 Projected frontal area: 𝐴 (m2) 

 Non-dimensional aerodynamic forces and moments: 𝐶𝐷, 𝐶𝐿, 𝐶𝑆, 𝐶𝑃𝑀, 𝐶𝑅𝑀, 𝐶𝑌𝑀 defined 

according to SAE J1594_201007.2 

The aerodynamic forces acting on the body of a vehicle are and are shown in Figure 15. Side 
view of the Drivaer model inside the proposed domain is shown in Figure 16 and the side view 
in Figure 17. 

                                            
2 https://saemobilus.sae.org/content/J1594_201007/ 

https://saemobilus.sae.org/content/J1594_201007/
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Figure 15. Coordinate system and definition of forces and moments and yaw angle according to SAE J1594_201007. 

 

 
Figure 16. Side view of a Drivaer model in a 512x256x128 volume with front wheels at x=140 and rear wheels at x=300. 

 

 
Figure 17. Top view of a Drivaer model in a 512x256x128 volume with front wheels at x=140 and rear wheels at x=300.  

The data will be stored in the HDF53 format. An HDF5 file is structured similar to a file system. 
It is advised to use the shuffle feature and either the lzf (for fast saving) or gzip (for smaller 
files) compression for the floating point field data sets to reduce the file sizes and speed up 

                                            
3 https://support.hdfgroup.org/HDF5/ 

https://support.hdfgroup.org/HDF5/
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loading.4 Metadata relating to the specific case can also be stored in the HDF5 files, such as a 
name or description of the simulation and values of variables used to generate the geometry. 
 

2.2.2. Outputs and requirements for Hybrid PIML approach 
The Physics Informed Machine Learning (PIML) approach requires additional processing of 
the flow field quantities mentioned in 2.2.1 and few others as described below. This approach 
differs in that it aims to improve the accuracy of conventional RANS simulations, therefore it 
will not resample data to a uniform grid. On the contrary, in this approach every cell in the 
RANS grid, can be a sample for the training. This practically means that we do not need 
hundreds of simulations to get enough training samples. A lot fewer simulations are needed, 
but each one will likely have a bigger grid than the uniform grid mentioned in the previous 
approach and at each grid point we will need to store more quantities. 
The bigger grid is due to the fact that RANS (2D/3D) simulation grid of automotive CFD 
simulations is used directly in the PIML model training phase and also the Direct Numerical 
Solution (2D) / Large Eddy Simulation (3D) solutions are interpolated to RANS grid. The 2D 
conditions are to be used only to establish the Hybrid PIML workflow and hence the 
requirements are specified in the next sections mainly for 3D geometries. The detailed 
discussion related to the number of training samples and corresponding data storage 
requirements for the Hybrid PIML approach is done at the end of this sub-section (2.2.2). Data 
storage requirements will certainly fit within the resources available in a typical automotive 
industry. 
 
It should be noted that as sub task 1.1.3 in work package 1 evolves, the parametric set could 
be reduced/increased. Hence, the flow field variables data like pressure, velocity etc. along 
with the inputs and responses parametric set necessary for PIML model need to be stored. 
[11][12] 
 
Output Fields: 
 

Input 
Parameter 

(𝑞𝛽) 
Description Feature (�̂�𝛽) Normalization factor(�̃�𝛽) 

𝑞1 
Ratio of excess rotation rate 
to strain rate 

½ (||Ω||2 - ||S||2) ||S||2 

𝑞2 Turbulence Intensity K 
1

2
𝑈𝑖𝑈𝑖 

𝑞3 
Wall-distance based 
Reynolds number 

min(
√𝑘𝑑

50𝜈
, 2) -NA- 

𝑞4 
Pressure gradient along 
streamline 

𝑈𝑘

𝜕𝑃

𝜕𝑥𝑘
 √

𝜕𝑃

𝜕𝑥𝑗

𝜕𝑃

𝜕𝑥𝑗
𝑈𝑖𝑈𝑖 

𝑞5 
Ratio of turbulent time scale 
to mean strain time scale 

𝑘

𝜀
 

1

||𝑆||
 

𝑞6 
Ratio of pressure normal 
stresses to shear stresses 

√
𝜕𝑃

𝜕𝑥𝑖

𝜕𝑃

𝜕𝑥𝑖
 

1

2
𝜌

𝜕(𝑈𝑘)
2

𝜕𝑥𝑘
 

                                            
4 http://docs.h5py.org/en/stable/high/dataset.html 

http://docs.h5py.org/en/stable/high/dataset.html
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𝑞7 
Non-orthogonality between 
velocity and its gradient 

|𝑈𝑖𝑈𝑖

𝜕𝑈𝑖

𝜕𝑥𝑗
| √𝑈𝑙𝑈𝑙𝑈𝑖

𝜕𝑈𝑖

𝜕𝑥𝑗
𝑈𝑘

𝜕𝑈𝑘

𝜕𝑥𝑗
 

𝑞8 
Ratio of convection to 
production of turbulent 
kinetic energy 

𝑈𝑖

𝑑𝑘

𝑑𝑥𝑖
 |𝑢𝑗

′𝑢𝑘
′𝑆𝑗𝑘 

𝑞9 
Ratio of total to normal 
Reynolds Stresses 

‖𝑢𝑖
′𝑢𝑗

′‖ k 

𝑞10 Streamline Curvature 𝐷𝜏

𝐷𝑠
 

where 𝜏 =  
𝑈

|𝑈|
 

𝐷𝑠 = |𝑈|𝐷𝑡 

1

𝐿𝐶
 

 
Where  

𝑈𝑖 = Mean velocity 
S = strain rate tensor 
𝑢𝑖

 ′ = Fluctuation velocity 

𝜀 = turbulence dissipation rate 

Ω = rotation rate tensor 

ν = fluid viscosity 
d = distance to wall 
D = material derivative 

𝐿𝑐= Characteristic length scale 
 

Finally, input parameter is defined as 𝑞𝛽 = 
�̂�𝛽

(�̂�𝛽 + �̃�𝛽)⁄  

β = 1, 2, …10 except β = 3 
Repeated indices imply summation for indices i, j, k, and l but not for β  
 
The input parameters are computed using the RANS simulation data sets whereas the 
Reynolds stress tensor invariant based components are post-processed from both RANS and 
DNS (or any considered true solution) simulations. As sub-task 1.1.3 evolves and the Hybrid 
PIML work flow is established, the true solution is to be substituted with industry computable 
LES simulation solutions. So, from one RANS simulation, a total of 10 input parameters and 2 
responses are to be computed and stored whereas from the true solution, only 2 responses 
are required. However, the responses from the true solution are stored as deltas (calculated 
from the difference between the RANS solution and the true solution responses). This results 
in a dataset of 14 parameters including 10 inputs, 2 responses from RANS and 2 deltas 
corresponding to the RANS and true solution response differences. Data is to be stored as 32 
bit/4 byte single precision floating point values.  
 
The approach is to map inputs with the deltas for training cases using machine learning (ML) 
algorithms. Later for the new test case, the inputs and responses are to be provided from 
RANS simulation for computing corresponding deltas by the ML algorithm, which are then 
added to the test case responses of RANS solution, for correcting them.  
 
The two responses correspond to the RANS models ill-predicted Reynolds Stress anisotropy 
tensor. The objective of machine learning model design in the PIML approach is to correct the 
responses from the RANS simulation using an anisotropic tensor computed in true solution, 
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i.e. DNS, (while establishing proof of concept)/LES (while dealing with full scale car 
simulations). The Reynolds stress tensor is projected to Galilean invariant quantities 

representing the shape of anisotropic tensor (ξ, η)  

𝜏 = 2𝑘 (
1

3
𝐼 + 𝐴) = 2𝑘 (

1

3
𝐼 + 𝑉𝛬𝑉𝑇) 

Where,  

𝜏 = Reynolds Stress Tensor 
I =Identity matrix 
A = anisotropic tensor 
k = turbulent kinetic energy or isotropic component 
V = [v1 v2 v3], corresponds to Eigenvectors of A  
Λ = diag[λ1 λ2 λ3], Eigenvalues of A 
 
With eigenvalues and eigenvectors computed, the invariants of anisotropic tensor A can be 
obtained as below. 
 
 

   First invariant of A     𝐼1 = 𝜆1 + 𝜆2 +  𝜆3  
            Second invariant        𝐼2 = 𝜆1𝜆2 + 𝜆2𝜆3 +  𝜆3𝜆1 
            Third invariant            𝐼3 = 𝜆1𝜆2 𝜆3 
 
Then, the second and third invariants are used finally to compute the responses (ξ, η) 
necessary for the ML model.  

                           𝜉 =  √
𝐼3

2

3
 

       𝜂 =  √−
𝐼2 

3
 

 
 
 
Data Storage Requirements: 
The normalized values of all the 10 input parameters are in the range [-1, 1], except for q3 
which lies in [0, 2] and hence the parameters are of 32 bit (4 bytes) single precision floating 
point type.  
 
The grid size requirements for this approach are categorized as per the standard CFD three 
dimensional (3D) simulation grids applicable to automotive industry geometries and flow 
Reynolds numbers. The final objective of PIML model is to be able to predict 3D turbulent 
flows, considering geometries relevant to electric automotive vehicles. The Ahmed body and 
DrivAer models (2) available in literature are to be used for training PIML model. The latter 
also complements the geometry and the simulations performed in the alternative ML approach 
that is briefly described in section 2.2.1. 
 
The grid size for a conventional 3D full scale RANS simulation of the flow around a car is 
approximately 60 million cells (for Reynolds number of O (107). A total of 12 floating point 
variables (flow fields) are needed for calculating the PIML model’s inputs and responses. This 
results in approximately 2750 MB of data. Then 12 floating point variables for inputs and 
responses require another 2750 MB, totalling 5500 MB of data. However, including some 
simplifications of under-hood appropriate for electric vehicles, along with other simplifications 
arising from the PIML model objectives being concentrated in external aero-thermal analysis 
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has led us to consider DrivAer model accounting for nearly 20 million cells(one third of full 
scale combustion based car statistics above). Hence the storage requirement for one single 
3D RANS simulation is 1833 MB (one third of 5500 MB). For the true solution, LES simulation 
will be performed instead of DNS as discussed in Section 2.5.2. The Reynolds stress 
symmetric tensor (6 components) along with 2 responses is to be interpolated to the RANS 
grid and stored. For the case of 20 million cells, considered above, this requires 610 MB data 
storage. Then, for one 3D PIML training sample (including both RANS and LES), a total of 
2440 MB is required.  
 
For the 3D PIML model, the number of training samples is not linked to the number of 
simulations, since each cell can theoretically be used as a training sample. The total number of 
required simulations will therefore be greatly reduced compared to the ML ROM approaches 
mentioned above. Although, the exact number of total training simulations can’t be objectively 
presented at this phase of project, it is to be well within the storage space availability of any 
automotive industry.  
 
As an example, in 2D, we have an initial estimation of 100 training simulations used to train the 
PIML model for providing proof of concept and establishing workflow. This number will most 
likely be significantly reduced for the 3D PIML due to significantly higher sample size available 
in every single training case. Also, as the model development progresses in sub-task 1.1.3, 
one of the objectives is to adapt the PIML for less computational resource requirements, in its 
training and execution phases. This will be achieved by working on different strategies, like 
localizing in certain flow regions, reducing the parametric space dimension, and 
increasing/reducing the PIML model input parameters and responses. This will be discussed in 
the corresponding work package 1 reports, related to sub-task 1.1.3.  
 

2.3. Computational cost of high fidelity CFD simulations 
We will assume that an ordinary high fidelity CFD simulation on a detailed car takes 24 hours 
to perform on an industrial simulation cluster in the beginning of the UPSCALE project, and an 
adjoint simulation 72 hours. The purpose of adjoint simulations will be described in a later 
section. Simulation speed is assumed to at least double over the duration of the project, so 
these numbers can be halved. The goal of the project is to achieve a trained aero-thermal 
model with less than a month of simulation time. That allows us to run 60 high fidelity CFD 
simulations on a detailed car, or 20 adjoint simulations, or any mix of the two. The number of 
low fidelity CFD simulations that can be run depends on which simplifications are made. This 
will be assumed to be the simulation budget for training a model. The numbers may be revised 
upwards if WP1 delivers significant speed increases. 
 

2.3.1. Cost of covering the parameter space 
The framework will initially be developed with the Drivaer model (2)5 parametrized into 15 
continuous and 2 discrete (on/off) variables. The model is simpler than a real car, but the 
parametrization is realistic. Running a full factorial with these parameters would require a total 

of 217(= 131072) simulations, which would take 182 years to run. Another alternative is to 
solve for the coefficients in a model: 

𝑦 = 𝑎 + ∑𝑏𝑖𝑥𝑖 +

𝑛

𝑖=1

∑∑𝑐𝑖𝑗𝑥𝑖𝑥𝑗

𝑖−1

𝑗=1

𝑛

𝑖=1
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Where 

𝑦 is the quantity to be modeled, for example the aerodynamic drag area, 𝐶𝐷𝐴, of a car, 
𝑥𝑖 is independent variable (factor) 𝑖, 
𝑛 is the number of variables, and 
𝑎, 𝑏𝑖, 𝑐𝑖𝑗 are the coefficients that need to be fit in the model. 

This captures main effects and two factor interactions and requires at least 1 + 𝑛 +
𝑛(𝑛−1)

2
 

simulations, which for 17 independent variables becomes 154. This is still many more than the 
goal, and yet no non-linear effects along any single independent variable is captured. 
 

2.3.2. Reducing complexity 
We can reduce the number of simulations in a number of ways: 

 Screen variables, and use only the most important ones. 

 Split the problem into smaller sub-problems. If the 17 variable problem is split into an 8 

and a 9 variable problem, the number of samples needed to fit to the equation for 𝑦 

above is reduced from 154 to 83 (=37+46). Splitting to three problems can reduce the 

number to 60 and four problems to 49. If we have knowledge of which variables 

interact, this can be done more effectively. 

 Far fewer function evaluations are needed for a good fit if the shape of the problem is 

known. E.g. if a function is known to be a log function, that information can be used 

instead of fitting to a general function such as a polynomial. For the scope of this work, 

it is assumed that we do not have any such information. 

 

2.3.2.1. Shape sensitivity from adjoint CFD 

By solving the adjoint method for CFD, the surface-normalized shape sensitivity 
𝜕𝐽

𝜕𝛽𝑗
 of a cost 

function 𝐽 can be obtained, where 𝛽𝑗 is the normal node displacement of node 𝑗 (3)�. The 

shape sensitivity to a parameter 𝑥𝑖 can in turn be defined as a sum over all nodes affected by 
changing the parameter: 

𝜕𝐽

𝜕𝑥𝑖
= ∑

𝜕𝐽

𝜕𝛽𝑗

𝜕�⃗� 𝑗

𝜕𝑥𝑖

̇
�⃗� 𝑗

𝑗

 

where �⃗� 𝑗 is the location in space of node 𝑗 and �⃗� 𝑗 is the outward surface normal at node 𝑗. 

 

2.4. Proposed screening workflow 
We have a model with 𝑛 independent continuous variables. We want to minimize a cost 

function 𝐽, for example the aerodynamic drag, 𝐶𝐷𝐴, of the model. Scale the variables so that 
the range of interest is [−1,1]. 

𝐽 = 𝑓(𝑥 ), 𝐽 ∈ 𝑅, 𝑥 ∈ 𝑅𝑛, 𝑥𝑖 ∈ [−1,1]  
1. Run an adjoint simulation with all independent variables at 0, i.e. evaluate 𝐽(𝑥 = 𝟎). 

Map the adjoint simulation results to the independent variables to get 
𝜕𝐽(𝟎)

𝜕𝑥𝑖
. 

2. For independent variables 𝑥𝑖 where the adjoint simulation indicates that 
𝜕𝐽(𝟎)

𝜕𝑥𝑖
< 0, flip 

the mapping so that 
𝜕𝐽(𝟎)

𝜕𝑥𝑖
≥ 0 ∀ 𝑖 ∈ [1, 𝑛]. 
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3. Run one CFD adjoint simulation with  𝑥 = −𝟏 and one with 𝑥 = 𝟏 and evaluate 
𝜕𝐽(−𝟏)

𝜕𝑥𝑖
 

and 
𝜕𝐽(𝟏)

𝜕𝑥𝑖
.  Again, the adjoint simulation results are mapped to the independent 

variables. 

4. If, at this stage, there is any independent variable 𝑖 that the aerodynamicist who is trying 

to optimize the car is free to choose, and 
𝜕𝐽(𝑥 )

𝜕𝑥𝑖
≥ 0∀𝑥 ∈ {−𝟏, 𝟎, 𝟏}, then that variable can 

be set to -1 in all future simulations and dropped from further investigation, regardless 

of its importance. 

5. Now, the contribution to 𝐽 from variable 𝑥𝑖 can be estimated with the equation: 

Δ𝐽𝑖(𝑥𝑖) = 𝑎𝑖𝑥𝑖 + 𝑏𝑖𝑥𝑖
2 + 𝑐𝑖𝑥𝑖

3 

with the assumption: 
dΔ𝐽𝑖(𝑥𝑖 = −1)

d𝑥𝑖
=

𝜕𝐽(−𝟏)

𝜕𝑥𝑖
,
dΔ𝐽𝑖(0)

d𝑥𝑖
=

𝜕𝐽(𝟎)

𝜕𝑥𝑖
,
dΔ𝐽𝑖(1)

d𝑥𝑖
=

𝜕𝐽(𝟏)

𝜕𝑥𝑖
 

which yields: 

 

𝑎𝑖 =
𝜕𝐽(𝟎)

𝜕𝑥𝑖
 

𝑏𝑖 = −
1

4
(
𝜕𝐽(−𝟏)

𝜕𝑥𝑖
−

𝜕𝐽(𝟏)

𝜕𝑥𝑖
) 

𝑐𝑖 =
1

6
(
𝜕𝐽(−𝟏)

𝜕𝑥𝑖
− 2

𝜕𝐽(𝟎)

𝜕𝑥𝑖
+

𝜕𝐽(𝟏)

𝜕𝑥𝑖
) 

6. Find the minimum and maximum of Δ𝐽𝑖(𝑥𝑖) in the interval 𝑥𝑖 ∈ [−1,1]. The 𝑥𝑖 that yields 

the minimum and maximum Δ𝐽𝑖 are denoted 𝑥𝑖,𝑚𝑖𝑛 and 𝑥𝑖,𝑚𝑎𝑥, respectively. 

7. Run an ordinary CFD simulation with 𝑥 = 𝑥 𝑚𝑖𝑛 = [𝑥1,𝑚𝑖𝑛, … , 𝑥𝑛,𝑚𝑖𝑛]
𝑇
 and one with 

𝑥 = 𝑥 𝑚𝑎𝑥 = [𝑥1,𝑚𝑎𝑥, … , 𝑥𝑛,𝑚𝑎𝑥]
𝑇
. The difference in 𝐽 between the two simulations will be 

used to estimate the order of magnitude of change of 𝐽 in the domain under 

investigation. 

8. In the next step is optional but very useful when the number of variables is large. 

Sequential bifurcation (4) is used to exclude unimportant variables. This is done by 

splitting the variables in to two groups of as equal size as possible. The screening 

through sequential bifurcation is accelerated by putting the variables that are expected 

to be less important in the first group, and the rest in the second group each time the 

problem is split. The measure of how important variable 𝑖 is expected to be is: 

𝐼𝑖 = max(abs (
𝜕𝐽(−𝟏)

𝜕𝑥𝑖
) , abs (

𝜕𝐽(𝟎)

𝜕𝑥𝑖
) , abs (

𝜕𝐽(𝟏)

𝜕𝑥𝑖
)) 

To determine the importance of a group of variables contained in the set 𝑆, run a CFD 

simulation with 𝑥 = 𝑥 𝑆 such that: 

𝑥𝑖 = {
𝑥𝑚𝑎𝑥 if 𝑥𝑖 ∈ 𝑆
𝑥𝑚𝑖𝑛 otherwise

 

The group is important if 𝐽(𝑥 𝑆) − 𝐽(𝑥 𝑚𝑖𝑛) is larger than a threshold set by the user. If the 

group is important, it is split again, otherwise it is discarded and the variables will not be 
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used anymore. 

 

Figure 18. Sequential bifurcation example reducing 17 independent variables to 5 important ones in just 14 
simulations. The blue dots with black circles are simulations that end up showing groups of variables are important, 
and the grey dots circled are simulations showing variables are unimportant.  

9. If there are too many important variables remaining after screening, the problem should 

be split into sub problems. For example splitting variables affecting the front into one 

group and variables affecting the rear in a different group. 

When only the most important variables remain, the remaining variables can be investigated 
further. The remaining budget for further investigation, assuming 3 adjoint simulations and 14 
ordinary CFD simulations during the sequential bifurcation, is 37. An alternative is to skip the 
sequential bifurcation step and instead keep a desired number of most important variables, as 

determined by the importance function 𝐼𝑖. Then the remaining budget is 51 CFD simulations 
which is within the scope of the project when running high fidelity transient simulations. 
 
 

2.5. Accuracy requirements for the reduced models 
This subsection describes the accuracy requirements. Subsection 2.5.1 presents the accuracy 
requirements for the general machine learning models applied in this work package and 
subsection 2.5.2 focuses on the accuracy requirement for the hybrid physics informed machine 
learning. 
 

2.5.1. Machine learning 
In the development phase of a vehicle the accuracy requirements of the simulation methods 
used for external aerodynamics are highly dependent on the context. When evaluating the 
overall aerodynamic properties of the vehicle the accuracy of the absolute values of the drag 
and lift forces will be important. While when e.g. focusing on improving the aerodynamic drag 
on the vehicle, it can be acceptable to know in which direction to move the surface in order to 
decrease drag. The trends of the observed parameters might therefore give enough 
information to be able to improve the aerodynamic properties of the vehicle.  
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Currently available publications on 3 dimensional simulations on a detailed passenger vehicles 
include results where POD has been applied. The results present qualitative comparison 
between field variables (5) as well as accuracy comparison where the error when comparing to 
high fidelity simulations is in the range of around 5% for the velocity and pressure fields and 
lower than 1% for the drag coefficient. (6) (7) (8) (9). The results presented in section 2.1 and 
previous work where a convolutional neural network is applied on a 2 dimensional aerofoils 
(see e.g. (10)) give indication on the accuracy we can expect when applying it on a 3 
dimensional geometry. The general assumption here is that the accuracy will be lower when 
applying the method on a 3 dimensional case. The requirement, to be able to apply it in an 
optimization process, is that the trends of the global variables, drag and lift, are correctly 
predicted.  
 

2.5.2. Hybrid physics informed machine learning 
There are different approaches to model turbulence in CFD simulations. This includes RANS, 
DES, LES and DNS in the increasing order of prediction accuracy in comparison with natural 
flow physics/experiments. Also, the grid requirement increases approximately by 1 - 2 orders 
of magnitude when model changes from RANS to DES, DES to LES and LES to DNS are 
involved. The consequence is much higher computing resource requirements.  
 
Although DNS is more accurate, it has been performed only at low Reynolds numbers of O 
(104 - 105) and for highly simplified geometries in the literature, even using state-of-the-art 
supercomputing facilities. However, RANS, even though it is less accurate, is the work horse 
turbulence modelling approach for industry relevant CFD simulations. For industry level 
aerothermal simulations, DES and LES are chosen when there is a requirement for better time 
and space resolved turbulent flow along with other product design relevant parameters like 
drag coefficients (Cd), heat losses, efficiencies etc. As a part of product development, a typical 
approach for industrial applications is to choose a few possible final design relevant 
geometries, from the RANS simulations results, and then simulate using a more accurate 
DES/LES simulation for better aerothermal analysis.  
 
The final objective of the hybrid PIML approach is to obtain the level of 3D LES models 
accuracy by correcting the results obtained from the RANS simulation. This is achieved by 
training the machine learning models using RANS steady state simulation results and 
considering LES modelled results on corresponding simulation geometries as true solutions. 
This will be done in an iterative manner, increasing the complexity of the simulated geometries 
gradually in order to test the limits of this approach and its feasibility.  
 
The work flow involving input parameters and responses, as elaborated in section 2.2.2, is 
executed considering RANS (less accurate) and DNS (true solution) results for 2D/simplified 
3D geometries to validate the PIML model with natural flow physics/experiments.  In this 
process, until the RANS solution is closely similar to corresponding DNS solution, the inputs 
and responses are extensively iterated within the constraints imposed by physical and 
mathematical aspects of fluid mechanics theory. The modifications include reducing the 
number of total parameters used or modifying/replacing chosen parameters in 2.2.2 by 
including new turbulent flow quantities, based on the accuracy of corrections provided by the 
PIML model. With the standardization of inputs and responses for this 2D cases, the PIML 
model will be extended for 3D full scale automotive geometries by further iterating sensitivities 
of LES modelling into the inputs and responses.  
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So the objective of the trained Hybrid PIML model in terms of accuracy is to obtain LES level 
accuracy for an input of RANS simulation result, on slightly simplified electric cars. Typically, 
RANS simulation for a full scale automotive geometry requires 12-24 hours whereas a LES 
simulation for the same geometry, and using same number and type of CPU cores, requires  
around 70-120 days. Considering these averaged statistics, if the computational complexity of 
the PIML model, during the prediction phase, is less than   the difference in computing time 
between RANS and LES, and it provides LES level accurate result, any reduction in number of 
days is an advantage for industrial applications. It should be noted that increasing cores or 
CPU performance will have a different set of statistics, with the ratio/trend being similar.  
  
 
By targeting a maximum limit of  20% error in solution or PIML output reaching only 80% 
accuracy in comparison with LES, the increase in run-time for PIML prediction will be 
reasonable for industry requirements. Assuming a least favourable scenario, PIML model can 
take up to 5 days and its input from RANS simulation needing 1 day would result in the 
reduction run-time as compared to   70 - 120 days for computing a LES solution. In this 
situation, even a 80% accurate LES solution is a positive position for using PIML model in 
regular industry projects. The most favourable scenario, for using PIML in product 
development phase, is when the PIML model computes the result in less than a day. The PIML 
model predictions, when already trained, are computed for the grid sizes equivalent to typical 
RANS simulations. Hence, the aforementioned scenarios are estimated based on this data 
feed size (RANS meshes) for the trained PIML model.     
 
To briefly provide the conditions for most and least favourable scenarios, it depends on the 
computational complexity of machine learning algorithm. The two approaches that are to be 
explored include decision trees based random forest algorithm whose prediction time is of O(p) 

and the neural networks approach with a prediction time complexity of order O(𝑝𝑛𝑙1 +
 𝑛𝑙1 𝑛𝑙2 + 𝑛𝑙2 𝑛𝑙3 + ⋯ . ) depending on the number of neuron layers that results in an accurate 

solution. Where p is number of features being predicted and 𝑛𝑙𝑖 being number of neurons in the 
ith layer.  So, the random-forests predicts solutions faster as compared to neural networks and 
the decision factor for choosing one of them for PIML model is the equilibrium point between 
speed and accuracy.  
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3. Simplified electric vehicle shape 
 
The publicly available version of the DrivAer model consists of three different interchangeable 
rear ends of a simplified vehicle. The rear ends correspond to a notchback, fastback and a 
squareback. The model also includes a simplified internal combustion engine. For the purpose 
of applying machine learning on a simplified electrical vehicle, a modified version of the 
DrivAer model has been created. This model includes a simplified battery model located in the 
floor of the vehicle and the internal combustion engine has been replaced with an electrical 
engine. The modified version of the DrivAer model is presented in Figure 19, showing the 
exterior and the underbody.  
 

 
Figure 19. The exterior and the underbody of the electrical version of the DrivAer model. The battery is located in the 
underfloor. 

 
The layout of the simplified electrical components, the engine and the battery is presented in 
Figure 20. 
 

 
Figure 20. A cut through the center of the car along the x-axis showing the location of the simplified electrical 
components, including the electrical engine driving the front wheels of the vehicle as well as the battery. 

 
For the purpose of optimizing the vehicle the geometry has been parameterized in the ANSA 
pre-processor. The parametrization consists of 14 continuous parameters and 3 discrete 
parameters. The continous parameters focus on the most important design features of the 
vehicle as well as the location of the battery and ride heigh. The discrete parameters are used 
for closing and opening the air intake in the front and to add or remove the optional spoiler. 
The parameters are presented in Table 1. 
 
Table 1. List of parameters applied to the electrical version of the DrivAer model 

1. Lower air intake closure (ON/OFF) 
2. Upper air intake spoiler (ON/OFF) 
3. Lower front grille height 
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4. Upper front grille height 
5. Bonnet inclination 
6. Front bumper ramp angle 
7. Windscreen inclination 
8. Battery pack z-position 
9. Rear window inclination 
10. Rear window length 
11. Trunk lid angle 
12. Trunk lid spoiler (ON/OFF) 
13. Trunk lid spoiler inclination 
14. Rear diffuser angle  
15. Trunk length 
16. Ride height – ground clearance 
17. Ride height – pitch angle 
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